Skip to main content
Log in

International Consensus Classification of acute lymphoblastic leukemia/lymphoma

  • Review
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

The updated International Consensus Classification (ICC) of B-acute lymphoblastic leukemia (B-ALL) and T-acute lymphoblastic leukemia (T-ALL) includes both revisions to subtypes previously outlined in the 2016 WHO classification and several newly described entities. The ICC classification incorporates recent clinical, cytogenetic, and molecular data, with a particular emphasis on whole transcriptome analysis and gene expression (GEX) clustering studies. B-ALL classification is modified to further subclassify BCR::ABL1-positive B-ALL and hypodiploid B-ALL. Additionally, nine new categories of B-ALL are defined, including seven that contain distinguishing gene rearrangements, as well as two new categories that are characterized by a specific single gene mutation. Four provisional entities are also included in the updated B-ALL classification, although definitive identification of these subtypes requires GEX studies. T-ALL classification is also updated to incorporate BCL11B-activating rearrangements into early T-precursor (ETP) ALL taxonomy. Additionally, eight new provisional entities are added to the T-ALL subclassification. The clinical implications of the new entities are discussed, as are practical approaches to the use of different technologies in diagnosis. The enhanced specificity of the new classification will allow for improved risk stratification and optimized treatment plans for patients with ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ALL:

Acute lymphoblastic leukemia

AYA:

Adolescents and young adults

B-ALL:

B-lymphoblastic leukemia

BCL11B-a:

BCL11B-activated

BCR::ABL1 + ALL-L:

BCR::ABL1 B-ALL with lymphoid only involvement

BCR::ABL1 + ALL-M:

BCR::ABL1-positive B-ALL with multilineage involvement

CDX2/UBTF:

B-ALL with UBTF::ATXN7L3/PAN3,CDX2

CML:

Chronic myeloid leukemia

ETP:

Early T precursor

FISH:

Fluorescence in situ hybridization

GEX:

Gene expression

ICC :

International Consensus Classification

IHC:

Immunohistochemistry

LBP:

Lymphoid blast phase

LMO1/2-r :

LMO1-rearranged or LMO2-rearranged

MPAL:

Mixed phenotype acute leukemia

NGS:

Next generation sequencing

NOS:

Not otherwise specified

PAX5alt:

PAX5-altered B-ALL

T-ALL:

T-lymphoblastic leukemia

TAL1/2-r:

TAL1-rearranged or TAL2-rearranged

TKIs:

Tyrosine kinase inhibitors

TS:

Transcriptome sequencing

WGS:

Whole genome sequencing (WGS)

References

  1. Arber DA, Hasserjian RP, Orazi A et al (2022) Classification of myeloid neoplasms/acute leukemia: global perspectives and the international consensus classification approach. Am J Hematol 97:514–518. https://doi.org/10.1002/ajh.26503

    Article  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405. https://doi.org/10.1182/blood-2016-03-643544

    Article  CAS  Google Scholar 

  3. Gu Z, Churchman ML, Roberts KG et al (2019) PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet 51:296–307. https://doi.org/10.1038/s41588-018-0315-5

    Article  CAS  Google Scholar 

  4. Chen Z, Hu S, Wang SA et al (2020) Chronic myeloid leukemia presenting in lymphoblastic crisis, a differential diagnosis with Philadelphia-positive B-lymphoblastic leukemia. Leuk Lymphoma 61:2831–2838. https://doi.org/10.1080/10428194.2020.1795160

    Article  CAS  Google Scholar 

  5. Hovorkova L, Zaliova M, Venn NC et al (2017) Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood 129:2771–2781. https://doi.org/10.1182/blood-2016-11-749978

    Article  CAS  Google Scholar 

  6. Biondi A, Gandemer V, De Lorenzo P et al (2018) Imatinib treatment of paediatric Philadelphia chromosome-positive acute lymphoblastic leukaemia (EsPhALL2010): a prospective, intergroup, open-label, single-arm clinical trial. Lancet Haematol 5:e641–e652. https://doi.org/10.1016/S2352-3026(18)30173-X

    Article  Google Scholar 

  7. Ware AD, Wake L, Brown P et al (2019) B-Lymphoid blast phase of chronic myeloid leukemia: a case report and review of the literature. AJSP Rev Rep 24:191–195

    Google Scholar 

  8. Schultz KR, Carroll A, Heerema NA et al (2014) Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia 28:1467–1471. https://doi.org/10.1038/leu.2014.30

    Article  CAS  Google Scholar 

  9. Cazzaniga G, De Lorenzo P, Alten J et al (2018) Predictive value of minimal residual disease in Philadelphia-chromosome-positive acute lymphoblastic leukemia treated with imatinib in the European intergroup study of post-induction treatment of Philadelphia-chromosome-positive acute lymphoblastic leukemia, based on immunoglobulin/T-cell receptor and BCR/ABL1 methodologies. Haematologica 103:107–115. https://doi.org/10.3324/haematol.2017.176917

    Article  CAS  Google Scholar 

  10. Tanasi I, Ba I, Sirvent N et al (2019) Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 134:1351–1355. https://doi.org/10.1182/blood.2019001244

    Article  Google Scholar 

  11. Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12:344–357. https://doi.org/10.1038/nrclinonc.2015.38

    Article  CAS  Google Scholar 

  12. Swerdlow SH, Campo E, Harris NL et al (2017) WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edn. International Agency for Research on Cancer, Lyon, p. 75

  13. Roberts KG, Li Y, Payne-Turner D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371:1005–1015. https://doi.org/10.1056/NEJMoa1403088

    Article  CAS  Google Scholar 

  14. Reshmi SC, Harvey RC, Roberts KG et al (2017) Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood 129:3352–3361. https://doi.org/10.1182/blood-2016-12-758979

    Article  CAS  Google Scholar 

  15. Maese L, Raetz EA (2019) Can Ph-like ALL be effectively targeted? Best Pract Res Clin Haematol 32:101096. https://doi.org/10.1016/j.beha.2019.101096

    Article  Google Scholar 

  16. Roberts KG, Mullighan CG (2020) The biology of B-progenitor acute lymphoblastic leukemia. Cold Spring Harb Perspect Med 10:a034835. https://doi.org/10.1101/cshperspect.a034835

    Article  CAS  Google Scholar 

  17. Roberts KG, Janke LJ, Zhao Y et al (2018) ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood 132:861–865. https://doi.org/10.1182/blood-2018-05-849554

    Article  CAS  Google Scholar 

  18. Swerdlow SH, International Agency for Research on Cancer (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4 edn. Internat. Agency for Research on Cancer, Lyon

  19. Holmfeldt L, Wei L, Diaz-Flores E et al (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45:242–252. https://doi.org/10.1038/ng.2532

    Article  CAS  Google Scholar 

  20. Li J-F, Dai Y-T, Lilljebjörn H et al (2018) Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases. Proc Natl Acad Sci U S A 115:E11711–E11720. https://doi.org/10.1073/pnas.1814397115

    Article  CAS  Google Scholar 

  21. Zhang J, McCastlain K, Yoshihara H et al (2016) Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 48:1481–1489. https://doi.org/10.1038/ng.3691

    Article  CAS  Google Scholar 

  22. Lilljebjörn H, Henningsson R, Hyrenius-Wittsten A et al (2016) Identification of ETV6-RUNX1-like and DUX4-rearranged subtypes in paediatric B-cell precursor acute lymphoblastic leukaemia. Nat Commun 7:11790. https://doi.org/10.1038/ncomms11790

    Article  Google Scholar 

  23. Yasuda T, Tsuzuki S, Kawazu M et al (2016) Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet 48:569–574. https://doi.org/10.1038/ng.3535

    Article  CAS  Google Scholar 

  24. Siegele BJ, Stemmer-Rachamimov AO, Lilljebjorn H et al (2022) N-terminus DUX4-immunohistochemistry is a reliable methodology for the diagnosis of DUX4-fused B-lymphoblastic leukemia/lymphoma (N-terminus DUX4 IHC for DUX4-fused B-ALL). Genes Chromosomes Cancer 61:449–458. https://doi.org/10.1002/gcc.23033

    Article  CAS  Google Scholar 

  25. Schinnerl D, Mejstrikova E, Schumich A et al (2019) CD371 cell surface expression: a unique feature of DUX4-rearranged acute lymphoblastic leukemia. Haematologica 104:e352–e355. https://doi.org/10.3324/haematol.2018.214353

    Article  CAS  Google Scholar 

  26. Hirabayashi S, Butler ER, Ohki K et al (2021) Clinical characteristics and outcomes of B-ALL with ZNF384 rearrangements: a retrospective analysis by the Ponte di Legno Childhood ALL Working Group. Leukemia 35:3272–3277. https://doi.org/10.1038/s41375-021-01199-0

    Article  CAS  Google Scholar 

  27. Shago M, Abla O, Hitzler J et al (2016) Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion. Pediatr Blood Cancer 63:1915–1921. https://doi.org/10.1002/pbc.26116

    Article  CAS  Google Scholar 

  28. Alexander TB, Gu Z, Iacobucci I et al (2018) The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature 562:373–379. https://doi.org/10.1038/s41586-018-0436-0

    Article  CAS  Google Scholar 

  29. McGinnis E, Yang D, Au N et al (2021) Clinical and laboratory features associated with myeloperoxidase expression in pediatric B-lymphoblastic leukemia. Cytometry B Clin Cytom 100:446–453. https://doi.org/10.1002/cyto.b.21966

    Article  CAS  Google Scholar 

  30. Hirabayashi S, Ohki K, Nakabayashi K et al (2017) ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 102:118–129. https://doi.org/10.3324/haematol.2016.151035

    Article  CAS  Google Scholar 

  31. Janet NB, Kulkarni U, Arun AK et al (2021) Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia. Int J Lab Hematol 43:658–663. https://doi.org/10.1111/ijlh.13580

    Article  Google Scholar 

  32. Zaliova M, Winkowska L, Stuchly J et al (2021) A novel class of ZNF384 aberrations in acute leukemia. Blood Adv 5:4393–4397. https://doi.org/10.1182/bloodadvances.2021005318

    Article  CAS  Google Scholar 

  33. Gu Z, Churchman M, Roberts K et al (2016) Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun 7:13331. https://doi.org/10.1038/ncomms13331

    Article  CAS  Google Scholar 

  34. Ohki K, Kiyokawa N, Saito Y et al (2019) Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica 104:128–137. https://doi.org/10.3324/haematol.2017.186320

    Article  CAS  Google Scholar 

  35. Liu W, Hu S, Konopleva M et al (2015) De Novo MYC and BCL2 double-hit B-cell precursor acute lymphoblastic leukemia (BCP-ALL) in pediatric and young adult patients associated with poor prognosis. Pediatr Hematol Oncol 32:535–547. https://doi.org/10.3109/08880018.2015.1087611

    Article  CAS  Google Scholar 

  36. Paietta E, Roberts KG, Wang V et al (2021) Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL. Blood 138:948–958. https://doi.org/10.1182/blood.2020010144

    Article  CAS  Google Scholar 

  37. Navid F, Mosijczuk AD, Head DR et al (1999) Acute lymphoblastic leukemia with the (8;14)(q24;q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia 13:135–141. https://doi.org/10.1038/sj.leu.2401244

    Article  CAS  Google Scholar 

  38. Wagener R, López C, Kleinheinz K et al (2018) IG-MYC + neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas. Blood 132:2280–2285. https://doi.org/10.1182/blood-2018-03-842088

    Article  CAS  Google Scholar 

  39. Moench L, Sachs Z, Aasen G et al (2016) Double- and triple-hit lymphomas can present with features suggestive of immaturity, including TdT expression, and create diagnostic challenges. Leuk Lymphoma 57:2626–2635. https://doi.org/10.3109/10428194.2016.1143939

    Article  CAS  Google Scholar 

  40. Ok CY, Medeiros LJ, Thakral B et al (2019) High-grade B-cell lymphomas with TdT expression: a diagnostic and classification dilemma. Mod Pathol 32:48–58. https://doi.org/10.1038/s41379-018-0112-9

    Article  CAS  Google Scholar 

  41. Bhavsar S, Liu Y-C, Gibson SE et al (2022) Mutational landscape of TdT+ large B-cell lymphomas supports their distinction from B-lymphoblastic neoplasms: a multiparameter study of a rare and aggressive entity. Am J Surg Pathol 46:71–82. https://doi.org/10.1097/PAS.0000000000001750

    Article  Google Scholar 

  42. Nie K, Redmond D, Eng KW et al (2021) Mutation landscape, clonal evolution pattern, and potential pathogenic pathways in B-lymphoblastic transformation of follicular lymphoma. Leukemia 35:1203–1208. https://doi.org/10.1038/s41375-020-01014-2

    Article  Google Scholar 

  43. Geyer JT, Subramaniyam S, Jiang Y et al (2015) Lymphoblastic transformation of follicular lymphoma: a clinicopathologic and molecular analysis of 7 patients. Hum Pathol 46:260–271. https://doi.org/10.1016/j.humpath.2014.10.021

    Article  CAS  Google Scholar 

  44. Boer JM, Valsecchi MG, Hormann FM et al (2021) Favorable outcome of NUTM1-rearranged infant and pediatric B cell precursor acute lymphoblastic leukemia in a collaborative international study. Leukemia 35:2978–2982. https://doi.org/10.1038/s41375-021-01333-y

    Article  Google Scholar 

  45. Hormann FM, Hoogkamer AQ, Beverloo HB et al (2019) NUTM1 is a recurrent fusion gene partner in B-cell precursor acute lymphoblastic leukemia associated with increased expression of genes on chromosome band 10p12.31-12.2. Haematologica 104:e455–e459. https://doi.org/10.3324/haematol.2018.206961

    Article  Google Scholar 

  46. Pincez T, Landry J-R, Roussy M et al (2020) Cryptic recurrent ACIN1-NUTM1 fusions in non-KMT2A-rearranged infant acute lymphoblastic leukemia. Genes Chromosomes Cancer 59:125–130. https://doi.org/10.1002/gcc.22808

    Article  CAS  Google Scholar 

  47. Kimura S, Montefiori L, Iacobucci I et al (2022) Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia. Blood 139:3519–3531. https://doi.org/10.1182/blood.2022015444

    Article  CAS  Google Scholar 

  48. Passet M, Kim R, Gachet S et al (2022) Concurrent CDX2 cis-deregulation and UBTF::ATXN7L3 fusion define a novel high-risk subtype of B-cell ALL. Blood 139:3505–3518. https://doi.org/10.1182/blood.2021014723

    Article  CAS  Google Scholar 

  49. Yasuda T, Sanada M, Kawazu M et al (2022) Two novel high-risk adult B-cell acute lymphoblastic leukemia subtypes with high expression of CDX2 and IDH1/2 mutations. Blood 139:1850–1862. https://doi.org/10.1182/blood.2021011921

    Article  CAS  Google Scholar 

  50. Fischer U, Forster M, Rinaldi A et al (2015) Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 47:1020–1029. https://doi.org/10.1038/ng.3362

    Article  CAS  Google Scholar 

  51. Leonard J, Wolf JS, Degnin M et al (2021) Aurora A kinase as a target for therapy in TCF3-HLF rearranged acute lymphoblastic leukemia. Haematologica 106:2990–2994. https://doi.org/10.3324/haematol.2021.278692

    Article  Google Scholar 

  52. Mouttet B, Vinti L, Ancliff P et al (2019) Durable remissions in TCF3-HLF positive acute lymphoblastic leukemia with blinatumomab and stem cell transplantation. Haematologica 104:e244–e247. https://doi.org/10.3324/haematol.2018.210104

    Article  CAS  Google Scholar 

  53. Passet M, Boissel N, Sigaux F et al (2019) PAX5 P80R mutation identifies a novel subtype of B-cell precursor acute lymphoblastic leukemia with favorable outcome. Blood 133:280–284. https://doi.org/10.1182/blood-2018-10-882142

    Article  CAS  Google Scholar 

  54. Nebral K, Denk D, Attarbaschi A et al (2009) Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23:134–143. https://doi.org/10.1038/leu.2008.306

    Article  CAS  Google Scholar 

  55. Mullighan CG, Goorha S, Radtke I et al (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–764. https://doi.org/10.1038/nature05690

    Article  CAS  Google Scholar 

  56. Dang J, Wei L, de Ridder J et al (2015) PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood 125:3609–3617. https://doi.org/10.1182/blood-2015-02-626127

    Article  CAS  Google Scholar 

  57. Zaliova M, Stuchly J, Winkowska L et al (2019) Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica 104:1396–1406. https://doi.org/10.3324/haematol.2018.204974

    Article  CAS  Google Scholar 

  58. Bastian L, Schroeder MP, Eckert C et al (2019) PAX5 biallelic genomic alterations define a novel subgroup of B-cell precursor acute lymphoblastic leukemia. Leukemia 33:1895–1909. https://doi.org/10.1038/s41375-019-0430-z

    Article  CAS  Google Scholar 

  59. Zaliova M, Potuckova E, Lukes J et al (2021) Frequency and prognostic impact of ZEB2 H1038 and Q1072 mutations in childhood B-other acute lymphoblastic leukemia. Haematologica 106:886–890. https://doi.org/10.3324/haematol.2020.249094

    Article  Google Scholar 

  60. Morita K, Jain N, Kantarjian H et al (2021) Outcome of T-cell acute lymphoblastic leukemia/lymphoma: focus on near-ETP phenotype and differential impact of nelarabine. Am J Hematol 96:589–598. https://doi.org/10.1002/ajh.26144

    Article  CAS  Google Scholar 

  61. Liu Y, Easton J, Shao Y et al (2017) The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49:1211–1218. https://doi.org/10.1038/ng.3909

    Article  CAS  Google Scholar 

  62. Di Giacomo D, La Starza R, Gorello P et al (2021) 14q32 rearrangements deregulating BCL11B mark a distinct subgroup of T-lymphoid and myeloid immature acute leukemia. Blood 138:773–784. https://doi.org/10.1182/blood.2020010510

    Article  CAS  Google Scholar 

  63. Montefiori LE, Bendig S, Gu Z et al (2021) Enhancer hijacking drives oncogenic BCL11B expression in lineage-ambiguous stem cell leukemia. Cancer Discov 11:2846–2867. https://doi.org/10.1158/2159-8290.CD-21-0145

    Article  CAS  Google Scholar 

  64. Fang H, Wang W, El Hussein S et al (2021) B-cell lymphoma/leukaemia 11B (BCL11B) expression status helps distinguish early T-cell precursor acute lymphoblastic leukaemia/lymphoma (ETP-ALL/LBL) from other subtypes of T-cell ALL/LBL. Br J Haematol 194:1034–1038. https://doi.org/10.1111/bjh.17681

    Article  CAS  Google Scholar 

  65. Sun J, Yu W, Zhang X (2020) MEF2D-rearranged acute lymphoblastic leukemia resembles Burkitt lymphoma/leukemia. Ann Hematol 99:185–188. https://doi.org/10.1007/s00277-019-03857-x

    Article  Google Scholar 

  66. Iacobucci I, Kimura S, Mullighan CG (2021) Biologic and therapeutic implications of genomic alterations in acute lymphoblastic leukemia. J Clin Med 10:3792. https://doi.org/10.3390/jcm10173792

    Article  CAS  Google Scholar 

  67. McClure BJ, Pal M, Heatley SL et al (2022) Two novel cases of NUTM1-rearranged B-cell acute lymphoblastic leukaemia presenting with high-risk features. Br J Haematol 196:1407–1411. https://doi.org/10.1111/bjh.17995

    Article  Google Scholar 

  68. Jevremovic D, Roden AC, Ketterling RP et al (2016) LMO2 Is a specific marker of T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol 145:180–190. https://doi.org/10.1093/ajcp/aqv024

    Article  CAS  Google Scholar 

  69. Natkunam Y, Zhao S, Mason DY et al (2007) The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood 109:1636–1642. https://doi.org/10.1182/blood-2006-08-039024

    Article  CAS  Google Scholar 

  70. Homminga I, Pieters R, Langerak AW et al (2011) Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 19:484–497. https://doi.org/10.1016/j.ccr.2011.02.008

    Article  CAS  Google Scholar 

  71. Nasr MR, Rosenthal N, Syrbu S (2010) Expression profiling of transcription factors in B- or T-acute lymphoblastic leukemia/lymphoma and burkitt lymphoma: usefulness of PAX5 immunostaining as pan-Pre-B-cell marker. Am J Clin Pathol 133:41–48. https://doi.org/10.1309/AJCPYP00JNUFWCCY

    Article  CAS  Google Scholar 

  72. Mullighan CG, Collins-Underwood JR, Phillips LAA et al (2009) Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 41:1243–1246. https://doi.org/10.1038/ng.469

    Article  CAS  Google Scholar 

  73. Roberts KG, Yang Y-L, Payne-Turner D et al (2017) Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv 1:1657–1671. https://doi.org/10.1182/bloodadvances.2017011296

    Article  CAS  Google Scholar 

  74. Schmidt B, Brown LM, Ryland GL et al (2022) ALLSorts: an RNA-Seq subtype classifier for B-cell acute lymphoblastic leukemia. Blood Adv 6:4093–4097. https://doi.org/10.1182/bloodadvances.2021005894

    Article  Google Scholar 

  75. Rosenquist R, Cuppen E, Buettner R et al (2022) Clinical utility of whole-genome sequencing in precision oncology. Semin Cancer Biol 84:32–39. https://doi.org/10.1016/j.semcancer.2021.06.018

    Article  CAS  Google Scholar 

  76. Chiaretti S, Messina M, Foà R (2019) BCR/ABL1-like acute lymphoblastic leukemia: how to diagnose and treat? Cancer 125:194–204. https://doi.org/10.1002/cncr.31848

    Article  CAS  Google Scholar 

  77. Harvey RC, Kang H, Roberts KG et al (2013) Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention. Blood 122:826. https://doi.org/10.1182/blood.V122.21.826.826

    Article  Google Scholar 

  78. Arber DA et al (2022) International consensus classification of myeloid neoplasms and acute leukemia: integrating morphological, clinical, and genomic data. Blood 140(11):1200-1228

Download references

Acknowledgements

The authors thank the members of the working group including Elias Jabbour, Ching-Hon Pui, Kathryn Foucar, Nicola Goekbuget, Hartmut Doehner, and Mignon Loh, as well as Daniel Arber for thoughtful discussion. Additionally, the authors thank Dr. Qingsong Gao (St. Jude Children’s Research Hospital, Memphis, TN), who created Fig. 1.

Funding

A.S.D.: Financial support was received from P30 CA008748 (National Cancer Institute, National Institutes of Health).

C.G.M.: Financial support was received from P30 CA021765 and R35 CA197695 (National Cancer Institute, National Institutes of Health).

M.J.B.: Financial support was received from U10 CA180886 (National Cancer Institute, National Institutes of Health).

Author information

Authors and Affiliations

Authors

Contributions

M.J.B. was the initial contact for this invited review, and all authors (A.S.D., C.G.M., and M.J.B.) performed the literature search and data analysis, and drafted and/or critically revised the work. All authors have made substantial contributions to this review, have read and approved the final version submitted, and agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Michael J. Borowitz.

Ethics declarations

The contents of Tables 1, 2, 3, and 4 are similar to those published in “Arber DA et al. [78]” because the current review expands on the International Consensus Classification first described in the June 2022 manuscript; however, the contents of the current manuscript have not been copyrighted.

Conflict of interest

Authors A.S.D. and M.J.B. declare no competing interests. Author C.G.M. has received speaker (Illumina and Amgen) and consultant (Faze, Beam) honoraria, and receives research funding from AbbVie and Pfizer.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Amy S. Duffield is the submitting author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duffield, A.S., Mullighan, C.G. & Borowitz, M.J. International Consensus Classification of acute lymphoblastic leukemia/lymphoma. Virchows Arch 482, 11–26 (2023). https://doi.org/10.1007/s00428-022-03448-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-022-03448-8

Keywords

Navigation