Skip to main content

Advertisement

Log in

Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

In carcinogenesis of peripheral pulmonary carcinomas, multiple genetic and epigenetic alterations are involved. In this study, we quantified methylation levels of repetitive DNA elements (L1 and Alu) and six CpG island methylator phenotype (CIMP)-panel markers in various lesions representing steps in the development of lung adenocarcinoma (ADC), including atypical adenomatous hyperplasia, adenocarcinoma in situ, and invasive ADC. We then assessed methylation levels in an independent set of stage I ADCs (n = 100) and correlated methylation status with clinicopathological findings and clinical outcome. The pattern of changes in the methylation levels of L1 and Alu was different during progression of the lesion along the process of multistep carcinogenesis. A methylation level of >52.4 % of L1 and of >19.7 % of Alu in stage I ADC was associated with shorter cancer-specific survival in univariate but not in multivariate analysis. A tumor to normal lung tissue methylation ratio of >0.693 of L1 was an independent parameter heralding poor prognosis for stage I ADC patients. Methylation of CIMP-related genes was found in ADC. Stage I ADC cases without methylation of any of the six markers had a significantly shorter cancer-specific survival than ADC with methylation of one or more markers. The combination of tumor to normal L1 methylation ratio > 0.693 and absence of methylation of CIMP markers correlated independently with shorter cancer-specific survival. In conclusion, our findings suggest that Alu hypomethylation is an early and L1 hypomethylation a later event during multistep pulmonary carcinogenesis. The prognostic significance of the combination of methylation status of L1 and CIMP markers must be validated in large-scale studies of pulmonary ADC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen F, Cole P, Bina WF (2007) Time trend and geographic patterns of lung adenocarcinoma in the United States, 1973–2002. Cancer Epidemiol Biomarkers Prev 16:2724–2729. doi:10.1158/1055-9965.epi-07-0455

    Article  PubMed  Google Scholar 

  2. Chapman AD, Kerr KM (2000) The association between atypical adenomatous hyperplasia and primary lung cancer. Br J Cancer 83:632–636. doi:10.1054/bjoc.2000.1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lantuejoul S, Salameire D, Salon C, Brambilla E (2009) Pulmonary preneoplasia—sequential molecular carcinogenetic events. Histopathology 54:43–54. doi:10.1111/j.1365-2559.2008.03182.x

    Article  PubMed  Google Scholar 

  4. Ikeda K, Awai K, Mori T, Kawanaka K, Yamashita Y, Nomori H (2007) Differential diagnosis of ground-glass opacity nodules: CT number analysis by three-dimensional computerized quantification. Chest 132:984–990. doi:10.1378/chest. 07-0793

    Article  PubMed  Google Scholar 

  5. Lee HY, Lee KS (2011) Ground-glass opacity nodules: histopathology, imaging evaluation, and clinical implications. J Thorac Imaging 26:106–118. doi:10.1097/RTI.0b013e3181fbaa64

    Article  PubMed  Google Scholar 

  6. Morandi L, Asioli S, Cavazza A, Pession A, Damiani S (2007) Genetic relationship among atypical adenomatous hyperplasia, bronchioloalveolar carcinoma and adenocarcinoma of the lung. Lung Cancer 56:35–42. doi:10.1016/j.lungcan.2006.11.022

    Article  PubMed  Google Scholar 

  7. Yoo SB, Chung JH, Lee HJ, Lee CT, Jheon S, Sung SW (2010) Epidermal growth factor receptor mutation and p53 overexpression during the multistage progression of small adenocarcinoma of the lung. J Thorac Oncol 5:964–969. doi:10.1097/JTO.0b013e3181dd15c0

    PubMed  Google Scholar 

  8. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. doi:10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  9. Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658

    Article  CAS  PubMed  Google Scholar 

  10. Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M, Laird PW (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836. doi:10.1093/nar/gki987

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lengauer C, Kinzler KW, Vogelstein B (1997) DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci U S A 94:2545–2550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rodriguez J, Frigola J, Vendrell E, Risques RA, Fraga MF, Morales C, Moreno V, Esteller M, Capella G, Ribas M, Peinado MA (2006) Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res 66:8462–9468. doi:10.1158/0008-5472.CAN-06-0293

    Article  CAS  PubMed  Google Scholar 

  13. Shinjo K, Okamoto Y, An B, Yokoyama T, Takeuchi I, Fujii M, Osada H, Usami N, Hasegawa Y, Ito H, Hida T, Fujimoto N, Kishimoto T, Sekido Y, Kondo Y (2012) Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 33:1277–1285. doi:10.1093/carcin/bgs154

    Article  CAS  PubMed  Google Scholar 

  14. Selamat SA, Galler JS, Joshi AD, Fyfe MN, Campan M, Siegmund KD, Kerr KM, Laird-Offringa IA (2011) DNA methylation changes in atypical adenomatous hyperplasia, adenocarcinoma in situ, and lung adenocarcinoma. PLoS ONE 6:e21443. doi:10.1371/journal.pone.0021443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, Beer DG, Powell CA, Riely GJ, Van Schil PE, Garg K, Austin JH, Asamura H, Rusch VW, Hirsch FR, Scagliotti G, Mitsudomi T, Huber RM, Ishikawa Y, Jett J, Sanchez-Cespedes M, Sculier JP, Takahashi T, Tsuboi M, Vansteenkiste J, Wistuba I, Yang PC, Aberle D, Brambilla C, Flieder D, Franklin W, Gazdar A, Gould M, Hasleton P, Henderson D, Johnson B, Johnson D, Kerr K, Kuriyama K, Lee JS, Miller VA, Petersen I, Roggli V, Rosell R, Saijo N, Thunnissen E, Tsao M, Yankelewitz D (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. J Thorac Oncol 6:244–285. doi:10.1097/JTO.0b013e318206a221

    Article  PubMed  Google Scholar 

  16. Shin SH, Park SY, Ko JS, Kim N, Kang GH (2011) Aberrant CpG island hypermethylation in pediatric gastric mucosa in association with Helicobacter pylori infection. Arch Pathol Lab Med 135:759–765. doi:10.1043/2010-0140-OA.1

    CAS  PubMed  Google Scholar 

  17. Bae JM, Shin SH, Kwon HJ, Park SY, Kook MC, Kim YW, Cho NY, Kim N, Kim TY, Kim D, Kang GH (2012) ALU and LINE-1 hypomethylations in multistep gastric carcinogenesis and their prognostic implications. Int J Cancer 131:1323–1331. doi:10.1002/ijc.27369

    Article  CAS  PubMed  Google Scholar 

  18. Chung JH, Lee HJ, Kim BH, Cho NY, Kang GH (2011) DNA methylation profile during multistage progression of pulmonary adenocarcinomas. Virchows Arch 459:201–211. doi:10.1007/s00428-011-1079-9

    Article  CAS  PubMed  Google Scholar 

  19. O’Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA (2006) Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 30:1491–1501. doi:10.1097/01.pas.0000213313.36306.85

    Article  PubMed  Google Scholar 

  20. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522. doi:10.1016/j.ccr.2010.03.017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Cho NY, Kim JH, Moon KC, Kang GH (2009) Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 454:17–23. doi:10.1007/s00428-008-0706-6

    Article  CAS  PubMed  Google Scholar 

  22. Kim BH, Cho NY, Shin SH, Kwon HJ, Jang JJ, Kang GH (2009) CpG island hypermethylation and repetitive DNA hypomethylation in premalignant lesion of extrahepatic cholangiocarcinoma. Virchows Arch 455:343–351. doi:10.1007/s00428-009-0829-4

    Article  CAS  PubMed  Google Scholar 

  23. Lee HS, Kim BH, Cho NY, Yoo EJ, Choi M, Shin SH, Jang JJ, Suh KS, Kim YS, Kang GH (2009) Prognostic implications of and relationship between CpG island hypermethylation and repetitive DNA hypomethylation in hepatocellular carcinoma. Clin Cancer Res 15:812–820. doi:10.1158/1078-0432.CCR-08-0266

    Article  CAS  PubMed  Google Scholar 

  24. Park SY, Seo AN, Jung HY, Gwak JM, Jung N, Cho NY, Kang GH (2014) Alu and LINE-1 hypomethylation is associated with HER2 enriched subtype of breast cancer. PLoS ONE 9:e100429. doi:10.1371/journal.pone.0100429

    Article  PubMed Central  PubMed  Google Scholar 

  25. Pattamadilok J, Huapai N, Rattanatanyong P, Vasurattana A, Triratanachat S, Tresukosol D, Mutirangura A (2008) LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. Int J Gynecol Cancer 18:711–717. doi:10.1111/j.1525-1438.2007.01117.x

    Article  CAS  PubMed  Google Scholar 

  26. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, Schernhammer ES, Giovannucci EL, Fuchs CS (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100:1734–1738. doi:10.1093/jnci/djn359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ida S, Nagai Y, Ishimoto T, Iwatsuki M, Sakamoto Y, Miyamoto Y, Baba H (2012) Pyrosequencing assay to measure LINE-1 methylation level in esophageal squamous cell carcinoma. Ann Surg Oncol 19:2726–2732. doi:10.1245/s10434-011-2176-3

    Article  PubMed  Google Scholar 

  28. Ohka F, Natsume A, Motomura K, Kishida Y, Kondo Y, Abe T, Nakasu Y, Namba H, Wakai K, Fukui T, Momota H, Iwami K, Kinjo S, Ito M, Fujii M, Wakabayashi T (2011) The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma. PLoS ONE 6:e23332. doi:10.1371/journal.pone.0023332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Sigalotti L, Fratta E, Bidoli E, Covre A, Parisi G, Colizzi F, Coral S, Massarut S, Kirkwood JM, Maio M (2011) Methylation levels of the "long interspersed nucleotide element-1" repetitive sequences predict survival of melanoma patients. J Transl Med 9:78. doi:10.1186/1479-5876-9-78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Saito K, Kawakami K, Matsumoto I, Oda M, Watanabe G, Minamoto T (2010) Long interspersed nuclear element 1 hypomethylation is a marker of poor prognosis in stage IA non-small cell lung cancer. Clin Cancer Res 16:2418–2426. doi:10.1158/1078-0432.CCR-09-2819

    Article  CAS  PubMed  Google Scholar 

  31. Cash HL, Tao L, Yuan JM, Marsit CJ, Houseman EA, Xiang YB, Gao YT, Nelson HH, Kelsey KT (2012) LINE-1 hypomethylation is associated with bladder cancer risk among nonsmoking Chinese. Int J Cancer 130:1151–1159. doi:10.1002/ijc.26098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Shigaki H, Baba Y, Watanabe M, Iwagami S, Miyake K, Ishimoto T, Iwatsuki M, Baba H (2012) LINE-1 hypomethylation in noncancerous esophageal mucosae is associated with smoking history. Ann Surg Oncol 19:4238–4243. doi:10.1245/s10434-012-2488-y

    Article  PubMed  Google Scholar 

  33. Liu F, Killian JK, Yang M, Walker RL, Hong JA, Zhang M, Davis S, Zhang Y, Hussain M, Xi S, Rao M, Meltzer PA, Schrump DS (2010) Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 29:3650–3664. doi:10.1038/onc.2010.129

    Article  CAS  PubMed  Google Scholar 

  34. Furniss CS, Marsit CJ, Houseman EA, Eddy K, Kelsey KT (2008) Line region hypomethylation is associated with lifestyle and differs by human papillomavirus status in head and neck squamous cell carcinomas. Cancer Epidemiol Biomarkers Prev 17:966–971. doi:10.1158/1055-9965.EPI-07-2775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Zhang FF, Cardarelli R, Carroll J, Fulda KG, Kaur M, Gonzalez K, Vishwanatha JK, Santella RM, Morabia A (2011) Significant differences in global genomic DNA methylation by gender and race/ethnicity in peripheral blood. Epigenetics 6:623–629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Perng W, Rozek LS, Mora-Plazas M, Duchin O, Marin C, Forero Y, Baylin A, Villamor E (2012) Micronutrient status and global DNA methylation in school-age children. Epigenetics 7:1133–1141. doi:10.4161/epi.21915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by a grant from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A111405 to JH Chung); a grant from grant no. 0420140250 from the SNUH Research Fund (to GH Kang); a grant from the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by MEST (2009–0093820 to GH Kang); the NRF grant funded by the Korea government (MSIP) (2011–0030049 to GH Kang); and a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C1277 to GH Kang).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Haeng Chung or Gyeong Hoon Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Methylation frequencies of each CpG island methylator phenotype marker in precursor lesions of ADC. NL-ADC, non-neoplastic lung tissue from patients with lung adenocarcinoma; NL, normal lung tissue from patients with non-neoplastic lung disease; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; ADC-T1a, adenocarcinoma of the T1a stage; ADC > T1a, adenocarcinoma of the T1b stage or higher (JPEG 184 kb)

Supplementary Figure 2

Kaplan–Meier log-rank test of cancer-specific survival in patients with stage I adenocarcinoma according to methylation status of each CIMP marker. Green line, presence of methylation; blue line, absence of methylation (JPEG 301 kb)

Supplementary Figure 3

In our previous study, we analyzed methylation statuses of 18 cancer-specific methylation markers in precursor lesions of ADC. A progressive increase in the number of methylated markers was noted along with progression of the lesion (GIF 14 kb)

High-Resolution Image (TIFF 89 kb)

Supplementary Figure 4

A significant difference in L1 methylation level was noted between adenocarcinomas and squamous cell carcinomas (JPEG 103 kb)

Supplementary Figure 5

Kaplan–Meier survival curves for stage I adenocarcinoma patients with postoperative chemotherapy (n = 62, a) or without postoperative chemotherapy (n = 38, b) according to methylation status of CIMP markers. (JPEG 297 kb)

ESM 2

(XLSX 8 kb)

ESM 3

(DOCX 13 kb)

ESM 4

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhee, YY., Lee, TH., Song, Y.S. et al. Prognostic significance of promoter CpG island hypermethylation and repetitive DNA hypomethylation in stage I lung adenocarcinoma. Virchows Arch 466, 675–683 (2015). https://doi.org/10.1007/s00428-015-1749-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-015-1749-0

Keywords

Navigation