Abstract
Recent studies identified unexpected expression and transcriptional complexity of the hemoprotein myoglobin (MB) in human breast cancer but its role in prostate cancer is still unclear. Expression of MB was immunohistochemically analyzed in three independent cohorts of radical prostatectomy specimens (n = 409, n = 625, and n = 237). MB expression data were correlated with clinicopathological parameters and molecular parameters of androgen and hypoxia signaling. Expression levels of novel tumor-associated MB transcript variants and the VEGF gene as a hypoxia marker were analyzed using qRT-PCR. Fifty-three percent of the prostate cancer cases were MB positive and significantly correlated with androgen receptor (AR) expression (p < 0.001). The positive correlation with CAIX (p < 0.001) and FASN (p = 0.008) as well as the paralleled increased expression of the tumor-associated MB transcript variants and VEGF suggest that hypoxia participates in MB expression regulation. Analogous to breast cancer, MB expression in prostate cancer is associated with steroid hormone signaling and markers of hypoxia. Further studies must elucidate the novel functional roles of MB in human carcinomas, which probably extend beyond its classic intramuscular function in oxygen storage.



Similar content being viewed by others
References
Ordway GA, Garry DJ (2004) Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol 207:3441–3446. doi:10.1242/jeb.01172
Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206:2011–2020
Garry DJ, Ordway GA, Lorenz JN, Radford NB, Chin ER, Grange RW, Bassel-Duby R, Williams RS (1998) Mice without myoglobin. Nature 395:905–908. doi:10.1038/27681
Godecke A, Flogel U, Zanger K, Ding Z, Hirchenhain J, Decking UK, Schrader J (1999) Disruption of myoglobin in mice induces multiple compensatory mechanisms. Proc Natl Acad Sci U S A 96:10495–10500
Flogel U, Merx MW, Godecke A, Decking UK, Schrader J (2001) Myoglobin: a scavenger of bioactive NO. Proc Natl Acad Sci U S A 98:735–740. doi:10.1073/pnas.011460298
Hendgen-Cotta UB, Merx MW, Shiva S, Schmitz J, Becher S, Klare JP, Steinhoff HJ, Goedecke A, Schrader J, Gladwin MT, Kelm M, Rassaf T (2008) Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury. Proc Natl Acad Sci U S A 105:10256–10261. doi:10.1073/pnas.0801336105
Helbo S, Dewilde S, Williams DR, Berghmans H, Berenbrink M, Cossins AR, Fago A (2012) Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. Am J Physiol Regul Integr Comp Physiol 302:R693–R701. doi:10.1152/ajpregu.00501.2011
Sriram R, Kreutzer U, Shih L, Jue T (2008) Interaction of fatty acid with myoglobin. FEBS Lett 582:3643–3649. doi:10.1016/j.febslet.2008.09.047
Fraser J, de Mello LV, Ward D, Rees HH, Williams DR, Fang Y, Brass A, Gracey AY, Cossins AR (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci U S A 103:2977–2981. doi:10.1073/pnas.0508270103
Kristiansen G, Rose M, Geisler C, Fritzsche FR, Gerhardt J, Luke C, Ladhoff AM, Knuchel R, Dietel M, Moch H, Varga Z, Theurillat JP, Gorr TA, Dahl E (2010) Endogenous myoglobin in human breast cancer is a hallmark of luminal cancer phenotype. Br J Cancer 102:1736–1745. doi:10.1038/sj.bjc.6605702
Kristiansen G, Hu J, Wichmann D, Stiehl DP, Rose M, Gerhardt J, Bohnert A, Ten HA, Moch H, Raleigh J, Varia MA, Subarsky P, Scandurra FM, Gnaiger E, Gleixner E, Bicker A, Gassmann M, Hankeln T, Dahl E, Gorr TA (2011) Endogenous myoglobin in breast cancer is hypoxia-inducible by alternative transcription and functions to impair mitochondrial activity: a role in tumor suppression? J Biol Chem 286:43417–43428. doi:10.1074/jbc.M111.227553
Bicker A, Dietrich D, Gleixner E, Kristiansen G, Gorr TA, Hankeln T (2013) Extensive transcriptional complexity during hypoxia-regulated expression of the myoglobin gene in cancer. Hum Mol Genet. doi:10.1093/hmg/ddt438
Tischler V, Fritzsche FR, Gerhardt J, Jager C, Stephan C, Jung K, Dietel M, Moch H, Kristiansen G (2010) Comparison of the diagnostic value of fatty acid synthase (FASN) with alpha-methylacyl-CoA racemase (AMACR) as prostatic cancer tissue marker. Histopathology 56:811–815. doi:10.1111/j.1365-2559.2010.03535.x
Fritzsche FR, Stephan C, Gerhardt J, Lein M, Hofmann I, Jung K, Dietel M, Kristiansen G (2010) Diagnostic and prognostic value of T-cell receptor gamma alternative reading frame protein (TARP) expression in prostate cancer. Histol Histopathol 25:733–739
Kristiansen G, Fritzsche FR, Wassermann K, Jager C, Tolls A, Lein M, Stephan C, Jung K, Pilarsky C, Dietel M, Moch H (2008) GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: Implications for tissue-based diagnostics. Br J Cancer 99:939–948. doi:10.1038/sj.bjc.6604614
Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27:380–392. doi:10.1016/j.molcel.2007.05.041
D’Antonio JM, Ma C, Monzon FA, Pflug BR (2008) Longitudinal analysis of androgen deprivation of prostate cancer cells identifies pathways to androgen independence. Prostate 68:698–714. doi:10.1002/pros.20677
Flonta SE, Arena S, Pisacane A, Michieli P, Bardelli A (2009) Expression and functional regulation of myoglobin in epithelial cancers. Am J Pathol 175:201–206. doi:10.2353/ajpath.2009.081124
Oleksiewicz U, Daskoulidou N, Liloglou T, Tasopoulou K, Bryan J, Gosney JR, Field JK, Xinarianos G (2011) Neuroglobin and myoglobin in non-small cell lung cancer: Expression, regulation and prognosis. Lung Cancer 74:411–418. doi:10.1016/j.lungcan.2011.05.001
Smith TW, Davidson RI (1984) Medullomyoblastoma. A histologic, immunohistochemical, and ultrastructural study. Cancer 54:323–332
Scher HI, Liebertz C, Kelly WK, Mazumdar M, Brett C, Schwartz L, Kolvenbag G, Shapiro L, Schwartz M (1997) Bicalutamide for advanced prostate cancer: the natural versus treated history of disease. J Clin Oncol 15:2928–2938
Seruga B, Ocana A, Tannock IF (2011) Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 8:12–23. doi:10.1038/nrclinonc.2010.136
Tran C, Ouk S, Clegg NJ, Chen Y, Watson PA, Arora V, Wongvipat J, Smith-Jones PM, Yoo D, Kwon A, Wasielewska T, Welsbie D, Chen CD, Higano CS, Beer TM, Hung DT, Scher HI, Jung ME, Sawyers CL (2009) Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324:787–790. doi:10.1126/science.1168175
Massie CE, Adryan B, Barbosa-Morais NL, Lynch AG, Tran MG, Neal DE, Mills IG (2007) New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Rep 8:871–878. doi:10.1038/sj.embor.7401046
Gloster J, Harris P (1977) Fatty acid binding to cytoplasmic proteins of myocardium and red and white skeletal muscle in the rat. A possible new role for myoglobin. Biochem Biophys Res Commun 74:506–513
Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. doi:10.1038/nrc1478
Flogel U, Laussmann T, Godecke A, Abanador N, Schafers M, Fingas CD, Metzger S, Levkau B, Jacoby C, Schrader J (2005) Lack of myoglobin causes a switch in cardiac substrate selection. Circ Res 96:e68–e75. doi:10.1161/01.RES.0000165481.36288.d2
Gao N, Zhang J, Rao MA, Case TC, Mirosevich J, Wang Y, Jin R, Gupta A, Rennie PS, Matusik RJ (2003) The role of hepatocyte nuclear factor-3 alpha (Forkhead Box A1) and androgen receptor in transcriptional regulation of prostatic genes. Mol Endocrinol 17:1484–1507. doi:10.1210/me.2003-0020
Acknowledgments
We thank Silvia Behnke (Immunohistochemistry) and Martina Storz (TMA core facility, USZ) for excellent technical support.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meller, S., Bicker, A., Montani, M. et al. Myoglobin expression in prostate cancer is correlated to androgen receptor expression and markers of tumor hypoxia. Virchows Arch 465, 419–427 (2014). https://doi.org/10.1007/s00428-014-1646-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00428-014-1646-y