Skip to main content

Advertisement

Log in

The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Ewing sarcoma (ES) is a high-grade malignant neoplasm primarily affecting children and young adults. The diagnosis of ES is often difficult because of its broad differential diagnosis comprising a diverse group of small round cell tumors (SRCTs). Although the identification of tumor type-specific fusion genes by molecular testing is the gold standard for the diagnosis of ES, such approaches are not always available in a routine pathology practice. Thus, a reliable immunohistochemical marker is required. A recent study using a limited number of tumor samples has shown that NKX2.2, a putative transcriptional target of EWSR1-FLI1, is a useful marker for the diagnosis of ES. In the present study, the immunohistochemical expression of NKX2.2 was evaluated on 46 genetically confirmed ES and 85 non-ES SRCTs, together with comparative assessment of CD99 and other molecular targets of EWSR1-FLI1, including NR0B1, E2F3, and EZH2. NKX2.2 was expressed in 37 (80 %) of the ES samples with a mostly diffuse and strong staining pattern, and 14 (16 %) of the non-ES SRCTs, including olfactory neuroblastomas, extraskeletal myxoid chondrosarcoma, mesenchymal chondrosarcoma, small cell carcinomas, and Merkel cell carcinoma, also expressed this marker. The sensitivity and specificity of the NKX2.2 expression in this cohort were 80 and 84 %, respectively. The specificity when combined with CD99 was 98 %, with exceptional expression of both markers in only two non-ES SRCTs, including one case each of mesenchymal chondrosarcoma and small cell carcinoma. NR0B1, E2F3, and EZH2 were less sensitive for specific markers for ES when applied singly or in any combination. In conclusion, the study reinforces that NKX2.2 is a useful immunohistochemical marker for ES, and that the combination of CD99 and NKX2.2 is a powerful diagnostic tool that can differentiate ES from other SRCTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F (2013) WHO classification of tumours of soft tissue and bone, 4th edn. IARC, Lyon

    Google Scholar 

  2. Goldblum JR, Folpe AL, Weiss SW (2014) Enzinger and Weiss’s soft tissue tumors, 6th edn. Mosby Elsevier, Philadelphia

    Google Scholar 

  3. Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398:622–627

    Article  PubMed  CAS  Google Scholar 

  4. Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR, Lessnick SL (2006) Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma. Cancer Cell 9:405–416

    Article  PubMed  CAS  Google Scholar 

  5. Yoshida A, Sekine S, Tsuta K, Fukayama M, Furuta K, Tsuda H (2012) NKX2.2 is a useful immunohistochemical marker for Ewing sarcoma. Am J Surg Pathol 36:993–999

    Article  PubMed  Google Scholar 

  6. Niakan KK, McCabe ER (2005) DAX1 origin, function, and novel role. Mol Genet Metab 86:70–83

    Article  PubMed  CAS  Google Scholar 

  7. Kinsey M, Smith R, Lessnick SL (2006) NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing’s sarcoma. Mol Cancer Res 4:851–859

    Article  PubMed  CAS  Google Scholar 

  8. Kinsey M, Smith R, Iyer AK, McCabe ER, Lessnick SL (2009) EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing’s sarcoma. Cancer Res 69:9047–9055

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA (2000) E2f3 is critical for normal cellular proliferation. Genes Dev 14:690–703

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Kauer M, Ban J, Kofler R, Walker B, Davis S, Meltzer P, Kovar H (2009) A molecular function map of Ewing’s sarcoma. PLoS One 4:e5415

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kovar H, Alonso J, Aman P et al (2012) The first European interdisciplinary ewing sarcoma research summit. Front Oncol 2:54

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bilke S, Schwentner R, Yang F, Kauer M, Jug G, Walker RL, Davis S, Zhu YJ, Pineda M, Meltzer PS, Kovar H (2013) Oncogenic ETS fusions deregulate E2F3 target genes in Ewing sarcoma and prostate cancer. Genome Res 23:1797–1809

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sparmann A, van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6:846–856

    Article  PubMed  CAS  Google Scholar 

  14. Richter GH, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM, Hotfilder M, Löwel D, von Luettichau I, Mossbrugger I, Quintanilla-Martinez L, Kovar H, Staege MS, Müller-Tidow C, Burdach S (2009) EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci 106:5324–5329

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Miyagawa Y, Okita H, Nakaijima H, Horiuchi Y, Sato B, Taguchi T, Toyoda M, Katagiri YU, Fujimoto J, Hata J, Umezawa A, Kiyokawa N (2008) Inducible expression of chimeric EWS/ETS proteins confers Ewing’s family tumor-like phenotypes to human mesenchymal progenitor cells. Mol Cell Biol 28:2125–2137

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Antonescu C (2014) Round cell sarcomas beyond Ewing: emerging entities. Histopathology 64:26–37

    Article  PubMed  Google Scholar 

  17. Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, Perrin V, Coindre JM, Delattre O (2012) A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet 44:461–466

    Article  PubMed  CAS  Google Scholar 

  18. Owen LA, Kowalewski AA, Lessnick SL (2008) EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing’s sarcoma. PLoS One 3:e1965

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheung IY, Feng Y, Danis K, Shukla N, Meyers P, Ladanyi M, Cheung NK (2007) Novel markers of subclinical disease for Ewing family tumors from gene expression profiling. Clin Cancer Res 13:6978–6983

    Article  PubMed  CAS  Google Scholar 

  20. Riggi N, Cironi L, Provero P, Suvà ML, Kaloulis K, Garcia-Echeverria C, Hoffmann F, Trumpp A, Stamenkovic I (2005) Development of Ewing’s sarcoma from primary bone marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468

    Article  PubMed  CAS  Google Scholar 

  21. Müller S, Söder S, Oliveira AM, Inwards CY, Aigner T (2005) Type II collagen as specific marker for mesenchymal chondrosarcomas compared to other small cell sarcomas of the skeleton. Mod Pathol 18:1088–1094

    Article  PubMed  Google Scholar 

  22. Wehrli BM, Huang W, De Crombrugghe B, Ayala AG, Czerniak B (2003) Sox9, a master regulator of chondrogenesis, distinguishes mesenchymal chondrosarcoma from other small blue round cell tumors. Hum Pathol 34:263–269

    Article  PubMed  CAS  Google Scholar 

  23. Lee AF, Hayes MM, Lebrun D, Espinosa I, Nielsen GP, Rosenberg AE, Lee CH (2011) FLI-1 distinguishes Ewing sarcoma from small cell osteosarcoma and mesenchymal chondrosarcoma. Appl Immunohistochem Mol Morphol 19:233–238

    Article  PubMed  Google Scholar 

  24. Wang L, Motoi T, Khanin R, Olshen A, Mertens F, Bridge J, Dal Cin P, Antonescu CR, Singer S, Hameed M, Bovee JV, Hogendoorn PC, Socci N, Ladanyi M (2012) Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosome Cancer 51:127–139

    Article  CAS  Google Scholar 

  25. Kovar H (2010) Downstream EWS/FLI1-upstream Ewing’s sarcoma. Genome Med 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Riggi N, Suvà ML, Suvà D, Cironi L, Provero P, Tercier S, Joseph JM, Stehle JC, Baumer K, Kindler V, Stamenkovic I (2008) EWS-FLI-1 expression triggers a Ewing’s sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res 68:2176–2185

    Article  PubMed  CAS  Google Scholar 

  27. Saito S, Ito K, Suzuki T, Utsunomiya H, Akahira J, Sugihashi Y, Niikura H, Okamura K, Yaegashi N, Sasano H (2005) Orphan nuclear receptor DAX-1 in human endometrium and its disorders. Cancer Sci 96:645–652

    Article  PubMed  CAS  Google Scholar 

  28. Abd-Elaziz M, Akahira J, Moriya T, Suzuki T, Yaegashi N, Sasano H (2003) Nuclear receptor DAX-1 in human common epithelial ovarian carcinoma: an independent prognostic factor of clinical outcome. Cancer Sci 94:980–985

    Article  PubMed  CAS  Google Scholar 

  29. Nakamura Y, Suzuki T, Arai Y, Sasano H (2009) DAX1 in human prostate cancer: a novel independent biological modulator. Endocr J 56:39–44

    Article  PubMed  Google Scholar 

  30. Oda T, Tian T, Inoue M, Ikeda J, Qiu Y, Okumura M, Aozasa K, Morii E (2009) Tumorigenic role of orphan nuclear receptor NR0B1 in lung adenocarcinoma. Am J Pathol 175:1235–1245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Kort EJ, Farber L, Tretiakova M, Petillo D, Furge KA, Yang XJ, Cornelius A, Teh BT (2008) The E2F3-Oncomir-1 axis is activated in Wilms’ tumor. Cancer Res 68:4034–4038

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Feber A, Clark J, Goodwin G, Dodson AR, Smith PH, Fletcher A, Edwards S, Flohr P, Falconer A, Roe T, Kovacs G, Dennis N, Fisher C, Wooster R, Huddart R, Foster CS, Cooper CS (2004) Amplification and overexpression of E2F3 in human bladder cancer. Oncogene 23:1627–1630

    Article  PubMed  CAS  Google Scholar 

  33. Foster CS, Falconer A, Dodson AR, Norman AR, Dennis N, Fletcher A, Southgate C, Dowe A, Dearnaley D, Jhavar S, Eeles R, Feber A, Cooper CS (2004) Transcription factor E2F3 overexpression in prostate cancer independently predicts clinical outcome. Oncogene 23:5871–5879

    Article  PubMed  CAS  Google Scholar 

  34. Madhavan J, Mitra M, Mallikarjuna K, Pranav O, Srinivasan R, Nagpal A, Venkatesan P, Kumaramanickavel G (2009) KIF14 and E2F3 mRNA expression in human retinoblastoma and its phenotype association. Mol Vis 15:235–240

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Ciarapica R, Russo G, Verginelli F, Raimondi L, Donfrancesco A, Rota R, Giordano A (2009) Deregulated expression of miR-26a and Ezh2 in rhabdomyosarcoma. Cell Cycle 8:172–175

    Article  PubMed  CAS  Google Scholar 

  36. Sasaki H, Setoguchi T, Matsunoshita Y, Gao H, Hirotsu M, Komiya S (2010) The knock-down overexpressed EZH2 and BMI-1 does not prevent osteosarcoma growth. Oncol Rep 23:677–684

    PubMed  CAS  Google Scholar 

  37. Changchien YC, Tátrai P, Papp G, Sápi J, Fónyad L, Szendrői M, Pápai Z, Sápi Z (2012) Poorly differentiated synovial sarcoma is associated with high expression of enhancer of zeste homologue 2 (EZH2). J Transl Med 10:216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Folpe AL, Hill CE, Parham DM, O’Shea PA, Weiss SW (2000) Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing’s sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol 24:1657–1662

    Article  PubMed  CAS  Google Scholar 

  39. Rossi S, Orvieto E, Furlanetto A, Laurino L, Ninfo V, Dei Tos AP (2004) Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol 17:547–552

    Article  PubMed  CAS  Google Scholar 

  40. Mhawech-Fauceglia P, Herrmann F, Penetrante R, Beck A, Sait S, Block AM, Odunsi K, Fisher J, Balos L, Cheney RT (2006) Diagnostic utility of FLI-1 monoclonal antibody and dual-colour, break-apart probe fluorescence in situ (FISH) analysis in Ewing’s sarcoma/primitive neuroectodermal tumour (EWS/PNET). A comparative study with CD99 and FLI-1 polyclonal antibodies. Histopathology 49:569–575

    Article  PubMed  CAS  Google Scholar 

  41. Wang WL, Patel NR, Caragea M, Hogendoorn PC, López-Terrada D, Hornick JL, Lazar AJ (2012) Expression of ERG, an Ets family transcription factor, identifies ERG-rearranged Ewing sarcoma. Mod Pathol 25:1378–1383

    Article  PubMed  CAS  Google Scholar 

  42. Tomlins SA, Palanisamy N, Brenner JC, Stall JN, Siddiqui J, Thomas DG, Lucas DR, Chinnaiyan AM, Kunju LP (2013) Usefulness of a monoclonal ERG/FLI1 antibody for immunohistochemical discrimination of Ewing family tumors. Am J Clin Pathol 139:771–779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Llombart-Bosch A, Machado I, Navarro S, Bertoni F, Bacchini P, Alberghini M, Karzeladze A, Savelov N, Petrov S, Alvarado-Cabrero I, Mihaila D, Terrier P, Lopez-Guerrero JA, Picci P (2009) Histological heterogeneity of Ewing’s sarcoma/PNET: an immunohistochemical analysis of 415 genetically confirmed cases with clinical support. Virchows Arch 455:397–411

    Article  PubMed  CAS  Google Scholar 

  44. Sáinz-Jaspeado M, Martin-Liberal J, Lagares-Tena L, Mateo-Lozano S, Garcia del Muro X, Tirado OM (2011) Caveolin-1 in sarcomas: friend or foe? Oncotarget 2:305–312

    PubMed  PubMed Central  Google Scholar 

Download references

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuji Matsuyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibuya, R., Matsuyama, A., Nakamoto, M. et al. The combination of CD99 and NKX2.2, a transcriptional target of EWSR1-FLI1, is highly specific for the diagnosis of Ewing sarcoma. Virchows Arch 465, 599–605 (2014). https://doi.org/10.1007/s00428-014-1627-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-014-1627-1

Keywords

Navigation