Skip to main content
Log in

Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Papillary and chromophobe renal cell carcinomas are characterized by multiple trisomies and monosomies, respectively, but the molecular mechanisms behind the acquisition of these numerical chromosome changes are unknown. To evaluate the role of mitotic checkpoint defects for the karyotypic patterns characteristic of these two renal cell cancer subtypes, we analyzed the messenger RNA expression levels of the major mitotic checkpoint genes of the budding uninhibited by benzimidazole family (BUB1, BUBR1, BUB3) and of the mitotic arrest deficiency family (MAD1, MAD2L1, MAD2L2) by real-time quantitative polymerase chain reaction in 30 renal cell cancer samples (11 chromophobe and 19 papillary) and 36 normal kidney tissue samples. MAD1, MAD2L1, and MAD2L2 showed significant expression differences in tumor tissue compared to controls. Chromophobe tumors presented underexpression of MAD1, and MAD2L2, whereas papillary tumors showed overexpression of MAD2L1. The expression level of the BUB gene family did not differ significantly from that of normal kidney. We conclude that expression changes in mitotic arrest deficiency genes (MAD1, MAD2L1, and MAD2L2) play a role in renal carcinogenesis characterized by multiple numerical chromosome abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbe JC (2001) Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93

    Article  PubMed  CAS  Google Scholar 

  2. Cahill DP, Lengauer C, Yu J, Riggins GJ, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1998) Mutations of mitotic checkpoint genes in human cancers. Nature 392:300–303

    Article  PubMed  CAS  Google Scholar 

  3. Chen RH (2004) Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J 23:3113–3121

    Article  PubMed  CAS  Google Scholar 

  4. Chun AC, Jin DY (2003) Transcriptional regulation of mitotic checkpoint gene MAD1 by p53. J Biol Chem 278:37439–37450

    Article  PubMed  CAS  Google Scholar 

  5. Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris CC, Kudoh S (2000) Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer 29:213–218

    Article  PubMed  CAS  Google Scholar 

  6. Grabsch H, Takeno S, Parsons WJ, Pomjanski N, Boecking A, Gabbert HE, Mueller W (2003) Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer-association with tumour cell proliferation. J Pathol 200:16–22

    Article  PubMed  CAS  Google Scholar 

  7. Grabsch HI, Askham JM, Morrison EE, Pomjanski N, Lickvers K, Parsons WJ, Boecking A, Gabbert HE, Mueller W (2004) Expression of BUB1 protein in gastric cancer correlates with the histological subtype, but not with DNA ploidy or microsatellite instability. J Pathol 202:208–214

    Article  PubMed  CAS  Google Scholar 

  8. Hernando E, Orlow I, Liberal V, Nohales G, Benezra R, Cordon-Cardo C (2001) Molecular analyses of the mitotic checkpoint components hsMAD2, hBUB1 and hBUB3 in human cancer. Int J Cancer 95:223–227

    Article  PubMed  CAS  Google Scholar 

  9. Imai Y, Shiratori Y, Kato N, Inoue T, Omata M (1999) Mutational inactivation of mitotic checkpoint genes, hsMAD2 and hBUB1, is rare in sporadic digestive tract cancers. Jpn J Cancer Res 90:837–840

    PubMed  CAS  Google Scholar 

  10. Jallepalli PV, Lengauer C (2001) Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer 1:109–117

    Article  PubMed  CAS  Google Scholar 

  11. Kops GJ, Foltz DR, Cleveland DW (2004) Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA 101:8699–8704

    Article  PubMed  CAS  Google Scholar 

  12. Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  PubMed  CAS  Google Scholar 

  13. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, Eble JN, Fleming S, Ljungberg B, Medeiros LJ, Moch H, Reuter VE, Ritz E, Roos G, Schmidt D, Srigley JR, Storkel S, van den Berg E, Zbar B (1997) The Heidelberg classification of renal cell tumours. J Pathol 183:131–133

    Article  PubMed  CAS  Google Scholar 

  14. Li GQ, Zhang HF (2004) Mad2 and p27 expression profiles in colorectal cancer and its clinical significance. World J Gastroenterol 10:3218–3220

    PubMed  CAS  Google Scholar 

  15. Michel LS, Liberal V, Chatterjee A, Kirchwegger R, Pasche B, Gerald W, Dobles M, Sorger PK, Murty VV, Benezra R (2001) MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409:355–359

    Article  PubMed  CAS  Google Scholar 

  16. Musacchio A, Hardwick KG (2002) The spindle checkpoint: structural insights into dynamic signalling. Nat Rev Mol Cell Biol 3:731–741

    Article  PubMed  CAS  Google Scholar 

  17. Ouyang B, Knauf JA, Ain K, Nacev B, Fagin JA (2002) Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: evidence for mitotic checkpoint dysfunction without mutations in BUB1 and BUBR1. Clin Endocrinol 56:341–350

    Article  CAS  Google Scholar 

  18. Percy MJ, Myrie KA, Neeley CK, Azim JN, Ethier SP, Petty EM (2000) Expression and mutational analyses of the human MAD2L1 gene in breast cancer cells. Genes Chromosomes Cancer 29:356–362

    Article  PubMed  CAS  Google Scholar 

  19. Shichiri M, Yoshinaga K, Hisatomi H, Sugihara K, Hirata Y (2002) Genetic and epigenetic inactivation of mitotic checkpoint genes hBUB1 and hBUBR1 and their relationship to survival. Cancer Res 62:13–17

    PubMed  CAS  Google Scholar 

  20. Stewart BW, Kleihues P (2003) World cancer report. IARC, Lyon

    Google Scholar 

  21. Storkel S, Eble JN, Adlakha K, Amin M, Blute ML, Bostwick DG, Darson M, Delahunt B, Iczkowski K (1997) Classification of renal cell carcinoma: workgroup no. 1. Union Internationale Contre le Cancer (UICC) and the American Joint Committee on Cancer (AJCC). Cancer 80:987–989

    Article  PubMed  CAS  Google Scholar 

  22. Thoenes W, Storkel S, Rumpelt HJ (1986) Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol Res Pract 81:125–143

    Google Scholar 

  23. Tsukasaki K, Miller CW, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said JW, Koeffler HP (2001) Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene 20:3301–3305

    Article  PubMed  CAS  Google Scholar 

  24. Warren CD, Brady DM, Johnston RC, Hanna JS, Hardwick KG, Spencer FA (2002) Distinct chromosome segregation roles for spindle checkpoint proteins. Mol Biol Cell 13:3029–3041

    Article  PubMed  CAS  Google Scholar 

  25. Wu CW, Chi CW, Huang TS (2004) Elevated level of spindle checkprotein MAD2 correlates with cellular mitotic arrest, but not with aneuploidy and clinicopathological characteristics in gastric cancer. World J Gastroenterol 10:3240–3244

    PubMed  CAS  Google Scholar 

  26. Yoon DS, Wersto RP, Zhou W, Chrest FJ, Garrett ES, Kwon TK, Gabrielson E (2002) Variable levels of chromosomal instability and mitotic spindle checkpoint defects in breast cancer. Am J Pathol 161:391–397

    PubMed  Google Scholar 

  27. Yuan B, Xu Y, Woo JH, Wang Y, Bae YK, Yoon DS, Wersto RP, Tully E, Wilsbach K, Gabrielson E (2006) Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Clin Cancer Res 12:405–410

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundação para a Ciência e a Tecnologia (FCT; Projecto de Investigação Plurianual do Centro de Investigação do IPO-Porto [03-05]). FRR (grant SFRH/BD7067/2001) and MP (grant SFRH/BPD/14506/2003) are research fellows of FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel R. Teixeira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, M., Soares, M.J., Cerveira, N. et al. Expression changes of the MAD mitotic checkpoint gene family in renal cell carcinomas characterized by numerical chromosome changes. Virchows Arch 450, 379–385 (2007). https://doi.org/10.1007/s00428-007-0386-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-007-0386-7

Keywords

Navigation