Skip to main content
Log in

Characterization of hey bHLH genes in teleost fish

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Hairy-related basic helix-loop-helix (bHLH) transcription factors are targets of Delta-Notch signaling and represent essential components for a number of cell fate decisions during vertebrate embryogenesis. Hey genes encode a subfamily of hairy-related proteins that have been implicated in processes like somitogenesis, blood vessel and heart development. We have identified and characterized hey genes in three teleost fish lineages using degenerate PCR and database searches. Phylogenetic analysis of Hey proteins suggests a complex pattern of evolution with high divergence of hey2 in Takifugu rubripes (Fugu, Japanese pufferfish) and possibly loss in the related Tetraodon nigroviridis (the freshwater pufferfish). In addition, duplication of hey1 in both pufferfishes, Fugu and Tetraodon, was observed. Conversely, zebrafish (Danio rerio) has the same complement of three hey genes as known from mammals. All three hey genes show much more restricted gene expression profiles in zebrafish when compared to mouse. Importantly, while all three murine Hey genes are expressed in overlapping patterns in the presomitic mesoderm (PSM) and somites, in zebrafish only hey1 shows PSM and somite expression in a highly dynamic fashion. Therefore, while overlapping expression might account for redundancy of hey function in higher vertebrates, this is unlikely to be the case in zebrafish. In deltaD (dlD) deficient after-eight zebrafish mutants, the dynamic expression of hey1 in the PSM is impaired and completely lost in newly formed somitomeres. Overexpression of dlD on the other hand results in the ectopic expression of hey1 in the axial mesoderm. Hence, hey1 represents a target of Delta-Notch signaling dynamically expressed during somite formation in zebrafish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4A–U
Fig. 5A–T

Similar content being viewed by others

References

  • Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, et al (2002) Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Chen JN, Fishman MC (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122:3809–3816

    CAS  PubMed  Google Scholar 

  • Chin MT, Maemura K, Fukumoto S, Jain MK, Layne MD, Watanabe M, Hsieh CM, Lee ME (2000) Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system. J Biol Chem 275:6381–6387

    CAS  PubMed  Google Scholar 

  • Dawson SR, Turner DL, Weintraub H, Parkhurst SM (1995) Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression. Mol Cell Biol 15:6923–6931

    PubMed  Google Scholar 

  • Donovan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12:1605–1610

    CAS  PubMed  Google Scholar 

  • Dornseifer P, Takke C, Campos-Ortega JA (1997) Overexpression of a zebrafish homologue of the Drosophila neurogenic gene Delta perturbs differentiation of primary neurons and somite development. Mech Dev 63:159–171

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Fischer A, Leimeister C, Winkler C, Schumacher N, Klamt B, Elmasri H, Steidl C, Maier M, Knobeloch KP, Amann K, Helisch A, Sendtner M, Gessler M (2002) Hey bHLH factors in cardiovascular development. Cold Spring Harb Symp Quant Biol 67:63–70

    CAS  PubMed  Google Scholar 

  • Gajewski M, Voolstra C (2002) Comparative analysis of somitogenesis related genes of the hairy/Enhancer of split class in Fugu and zebrafish. Genomics 3:21

    PubMed  Google Scholar 

  • Gessler M, Knobeloch KP, Helisch A, Amann K, Schumacher N, Fischer A, Leimeister C (2002) Mouse gridlock: No aortic coarctation or deficiency, but fatal cardiac defects in Hey2-/- mice. Curr Biol 12:1601–1604

    CAS  PubMed  Google Scholar 

  • Holley SA, Geisler R, Nüsslein-Volhard C (2000) Control of her1 expression during zebrafish somitogenesis by a Delta-dependent oscillator and an independent wave-front activity. Genes Dev 14:1678–1690

    CAS  PubMed  Google Scholar 

  • Holley SA, Jülich D, Rauch GJ, Geisler R, Nüsslein-Volhard C (2002) Her1 and the notch pathway function within the oscillator mechanism that regulated zebrafish somitogenesis. Development 129:1175–1183

    CAS  PubMed  Google Scholar 

  • Iso T, Sartorelli V, Chung G, Shichinonhe T, Kedes L, Hamamori Y (2001a) HERP, a new primary target of Notch regulated by ligand binding. Mol Cell Biol 21:6071–6079

    CAS  PubMed  Google Scholar 

  • Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y (2001b) HERP, a novel heterodimer partner of HES/E(spl) in notch signaling. Mol Cell Biol 21:6080–6089

    CAS  PubMed  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    CAS  PubMed  Google Scholar 

  • Kokubo H, Lun Y, Johnson RL (1999) Identification and expression of a novel family of bHLH cDNAs related to Drosophila hairy and enhancer of split. Biochem Biophys Res Commun 260:459–465

    CAS  PubMed  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    CAS  PubMed  Google Scholar 

  • Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85:173–177

    CAS  PubMed  Google Scholar 

  • Leimeister C, Schumacher N, Steidl C, Gessler M (2000a) Analysis of HeyL expression in wild-type and Notch pathway mutant mouse embryos. Mech Dev 98:195–203

    Article  Google Scholar 

  • Leimeister C, Dale K, Fischer A, Klamt B, Hrabe de Angelis M, Radtke F, McGrew MJ, Pourquie O, Gessler M (2000b) Oscillating expression of c-hey2 in the presomitic mesoderm suggests that the segmentation clock may use combinatorial signaling through multiple interacting bHLH factors. Dev Biol 227:91–103

    CAS  PubMed  Google Scholar 

  • Lin MH, Leimeister C, Gessler M, Kopan R (2000) Activation of the Notch pathway in the hair cortex leads to aberrant differentiation of the adjacent hair-shaft layers. Development 127:2421–2432

    CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Maier MM, Gessler M (2000) Comparative analysis of the human and mouse Hey1 promoter: Hey genes are new Notch target genes. Biochem Biophys Res Commun 275:652–660

    CAS  PubMed  Google Scholar 

  • Meyer A, Schartl M (1999) Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699–704

    Google Scholar 

  • Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments. Dev Biol 216:72–84

    CAS  PubMed  Google Scholar 

  • Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  CAS  PubMed  Google Scholar 

  • Oates AC, Ho RK (2002) Hairy/E(spl)-related (Her) genes are central components of the segmentation oscillator and display redundancy with the Delta-Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish. Development 129:2929–2946

    CAS  PubMed  Google Scholar 

  • Pichon B, Taelman V, Kricha S, Christophe D, Bellefroid EJ (2002) XHRT-1, a hairy and Enhancer of split related gene with expression in floor plate and hypochord during early Xenopus embryogenesis. Dev Genes Evol 212:491–495

    CAS  PubMed  Google Scholar 

  • Pourquie O, Tam PP (2001) A nomenclature for prospective somites and phases of cyclic gene expression in the presomitic mesoderm. Dev Cell 1:619–620

    CAS  PubMed  Google Scholar 

  • Roest Crollius H, Jaillon O, Bernot A, Dasilva C, Bouneau L, Fischer C, Fizames C, Wincker P, Brottier P, Quetier F, Saurin W, Weissenbach J (2000) Estimate of human gene number provided by genome-wide analysis using Tetraodon nigroviridis DNA sequence. Nat Genet 25:235–238

    PubMed  Google Scholar 

  • Rones MS, Woda J, Mercola M, McLaughlin KA (2002) Isolation and characterization of Xenopus Hey-1: a downstream mediator of Notch signalling. Dev Dyn 255:554–560

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT (2002) Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2. Proc Natl Acad Sci USA 99:16197–16202

    Article  CAS  PubMed  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  CAS  PubMed  Google Scholar 

  • Stainier DYR, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119:31–40

    CAS  PubMed  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Takke C, Campos-Ortega JA (1999) Her1, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development. Development 126:3005–3014

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Westerfield M (1993) The zebrafish book. University of Oregon Press, Eugene

  • Winkler C, Moon RT (2001) Zebrafish mdk2, a novel secreted midkine, participates in posterior neurogenesis. Dev Biol 229:102–118

    CAS  PubMed  Google Scholar 

  • Winkler C, Schäfer M, Duschl J, Schartl M, Volff JN (2003) Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res 13:1067–1081

    CAS  PubMed  Google Scholar 

  • Wittbrodt J, Meyer A, Schartl M (1998) More genes in fish? BioEssays 20:511–515

    Article  Google Scholar 

  • Zhong TP, Rosenberg M, Mohideen MA, Weinstein B, Fishman MC (2000) gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287:1820–1824

    CAS  PubMed  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signalling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jose Campos-Ortega for kindly providing the DeltaD expression construct, Artemis for providing the after-eight zebrafish mutants, Cordula Neuner for perfect technical assistance and Cornelia Leimeister and Matthias Schäfer for critical comments on the manuscript. We are also extremely grateful to Laurence Bouneau and the other members of the Tetraodon Genome project (Genoscope, Evry, France) for identifying and providing T. nigroviridis hey sequences. (Taki)Fugu data have been provided freely by the Fugu Genome Consortium for use in this publication only. We especially thank Manfred Schartl for his critical comments and support. This work was supported by the Deutsche Forschungsgemeinschaft (Ge539/9 and SFB 465). J.N.V. is supported by the BioFuture program of the German Bundesministerium für Bildung und Forschung (BMBF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Winkler.

Additional information

Edited by D. Tautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, C., Elmasri, H., Klamt, B. et al. Characterization of hey bHLH genes in teleost fish. Dev Genes Evol 213, 541–553 (2003). https://doi.org/10.1007/s00427-003-0360-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-003-0360-6

Keywords

Navigation