Skip to main content
Log in

Training with high perceptual difficulty improves the capacity and fidelity of internal representation in VWM

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

It has been shown that the capacity of visual working memory (VWM) is a strong predictor of individual intelligence, and researchers have developed various training protocols to improve VWM capacity. However, it seems that whether the fidelity of internal representation in VWM can also be improved by training is largely overlooked in the past literature. Here, we introduced a new training approach that involved increasing the perceptual difficulty of training materials to enhance VWM, and both memory capacity and the fidelity of representation were examined to assess the training efficacy. Participants with normal vision and cognitive abilities received 3-week training on VWM using a change detection task, and the results showed that both the capacity and the fidelity of memory representations were improved for training with perceptually difficult stimuli, while only the fidelity was improved for training with perceptually normal stimuli. In addition, we found that the training effects on memory precision may be subject to capacity constraints. We suggest that long-term adaptive training with perceptually difficult stimuli may facilitate encoding efficiency through familiarizing trainees with an increased baseline of cognitive workload during the encoding process. The present study offers clear evidence that training with high perceptual difficulty is more effective and the improvements in VWM are more stable than training with perceptually normal materials, and the simple manipulation on training stimuli indicates that the method can be generalized to a wider range of training situations and populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111.

    Article  PubMed  Google Scholar 

  • Arend, A. M., & Zimmer, H. D. (2012). Successful training of filtering mechanisms in multiple object tracking does not transfer to filtering mechanisms in a visual working memory task: Behavioral and electrophysiological evidence. Neuropsychologia, 50(10), 2379–2388.

    Article  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (2000). On the adaptive control of the false discovery rate in multiple testing with independent statistics. Journal of Educational and Behavioral Statistics, 25(1), 60–83.

    Article  Google Scholar 

  • Berry, A. S., Zanto, T. P., Clapp, W. C., Hardy, J. L., Delahunt, P. B., Mahncke, H. W., et al. (2010). The influence of perceptual training on working memory in older adults. PLoS ONE, 5(7), 1–8.

    Article  Google Scholar 

  • Blacker, K. J., & Curby, K. M. (2013). Enhanced visual short-term memory in action video game players. Attention Perception and Psychophysics, 75(6), 1128–1136.

    Article  Google Scholar 

  • Blacker, K. J., Negoita, S., Ewen, J. B., & Courtney, S. M. (2017). N-back versus complex span working memory training. Journal of Cognitive Enhancement, 1(4), 434–454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boot, W. R., Kramer, A. F., Simons, D. J., Fabiani, M., & Gratton, G. (2008). The effects of video game playing on attention, memory, and executive control. Acta Psychologica, 129(3), 387–398.

    Article  PubMed  Google Scholar 

  • Chen, D., Yee, E. H., & Jiang, Y. (2006). Visual working memory for trained and novel polygons. Visual Cognition, 14(1), 37–54.

    Article  Google Scholar 

  • Chooi, W. T., & Thompson, L. A. (2012). Working memory training does not improve intelligence in healthy young adults. Intelligence, 40(6), 531–542.

    Article  Google Scholar 

  • Conway, A. R., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552.

    Article  PubMed  Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.

    Article  PubMed  Google Scholar 

  • Crist, R. E., Kapadia, M. K., Westheimer, G., & Gilbert, C. D. (1997). Perceptual learning of spatial localization: Specificity for orientation, position, and context. Journal of Neurophysiology, 78(6), 2889–2894.

    Article  PubMed  Google Scholar 

  • Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008a). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512.

    Article  PubMed  Google Scholar 

  • Dahlin, E., Nyberg, L., Bäckman, L., & Neely, A. S. (2008b). Plasticity of executive functioning in young and older adults: Immediate training gains, transfer, and long-term maintenance. Psychology and Aging, 23(4), 720.

    Article  PubMed  Google Scholar 

  • Donaldson, W. (1993). Accuracy of d′ and A′ as estimates of sensitivity. Bulletin of the Psychonomic Society, 31(4), 271–274.

    Article  Google Scholar 

  • Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin and Review, 12(6), 1127–1133.

    Article  PubMed  Google Scholar 

  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309.

    Article  Google Scholar 

  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

    Article  PubMed  Google Scholar 

  • Gold, J. M., Fuller, R. L., Robinson, B. M., Braun, E. L., & Luck, S. J. (2007). Impaired top–down control of visual search in schizophrenia. Schizophrenia Research, 94(1–3), 148–155.

    Article  PubMed  Google Scholar 

  • Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.

    Article  PubMed  Google Scholar 

  • Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419.

    Article  PubMed  Google Scholar 

  • Heinzel, S., Schulte, S., Onken, J., Duong, Q. L., & Rapp, M. A. (2013). Working memory training improvements and gains in non-trained cognitive tasks in young and older adults. Aging Neuropsychology and Cognition, 21(2), 146–173.

    Article  Google Scholar 

  • Holmes, J., Gathercole, S. E., & Dunning, D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Developmental Science, 12(4), F9–F15.

    Article  PubMed  Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.

    Article  Google Scholar 

  • Jost, K., Bryck, R. L., Vogel, E. K., & Mayr, U. (2011). Are old adults just like low working memory young adults? Filtering efficiency and age differences in visual working memory. Cerebral Cortex, 21(5), 1147–1154.

    Article  PubMed  Google Scholar 

  • Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189.

    Article  Google Scholar 

  • Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What's new in psychtoolbox-3. Perception, 36(14), 1–16.

    Google Scholar 

  • Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive Sciences, 14(7), 317–324.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., et al. (2005). Computerized training of working memory in children with ADHD—a randomized, controlled trial. Journal of the American Academy of Child and Adolescent Psychiatry, 44(2), 177–186.

    Article  PubMed  Google Scholar 

  • Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.

    Article  PubMed  Google Scholar 

  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? Intelligence, 14(4), 389–433.

    Article  Google Scholar 

  • Li, C. H., He, X., Wang, Y. J., Hu, Z., & Guo, C. Y. (2017). Visual working memory capacity can be increased by training on distractor filtering efficiency. Frontiers in Psychology, 8, 196.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, S. C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., & Lindenberger, U. (2008). Working memory plasticity in old age: Practice gain, transfer, and maintenance. Psychology and Aging, 23(4), 731.

    Article  PubMed  Google Scholar 

  • Loosli, S. V., Buschkuehl, M., Perrig, W. J., & Jaeggi, S. M. (2012). Working memory training improves reading processes in typically developing children. Child Neuropsychology, 18(1), 62–78.

    Article  PubMed  Google Scholar 

  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.

    Article  PubMed  Google Scholar 

  • Melcher, D., & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PLoS ONE, 6(12), 1–11.

    Article  Google Scholar 

  • Moore, C. D., Cohen, M. X., & Ranganath, C. (2006). Neural mechanisms of expert skills in visual working memory. Journal of Neuroscience, 26(43), 11187–11196.

    Article  PubMed  Google Scholar 

  • Morrison, A. B., & Chein, J. M. (2011). Does working memory training work? The promise and challenges of enhancing cognition by training working memory. Psychonomic Bulletin and Review, 18(1), 46–60.

    Article  PubMed  Google Scholar 

  • Mumford, M. D., Costanza, D. P., Baughman, W. A., Threlfall, K., & Fleishman, E. A. (1994). Influence of abilities on performance during practice: Effects of massed and distributed practice. Journal of Educational Psychology, 86(1), 134.

    Article  Google Scholar 

  • Oberauer, K., Süβ, H. M., Wilhelm, O., & Wittmann, W. W. (2008). Which working memory functions predict intelligence? Intelligence, 36(6), 641–652.

    Article  Google Scholar 

  • Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.

    Article  PubMed  Google Scholar 

  • Olson, I. R., & Jiang, Y. (2004). Visual short-term memory is not improved by training. Memory and Cognition, 32(8), 1326–1332.

    Article  PubMed  Google Scholar 

  • Olson, I. R., Jiang, Y., & Moore, K. S. (2005). Associative learning improves visual working memory performance. Journal of Experimental Psychology: Human Perception and Performance, 31(5), 889–900.

    PubMed  Google Scholar 

  • Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44, 369–378.

    Article  PubMed  Google Scholar 

  • Pedale, T., & Santangelo, V. (2015). Perceptual salience affects the contents of working memory during free-recollection of objects from natural scenes. Frontiers in Human Neuroscience, 9, 60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Penner, I. K., Vogt, A., Stöcklin, M., Gschwind, L., Opwis, K., & Calabrese, P. (2012). Computerised working memory training in healthy adults: A comparison of two different training schedules. Neuropsychological Rehabilitation, 22(5), 716–733.

    Article  PubMed  Google Scholar 

  • Pessoa, L., Gutierrez, E., Bandettini, P. A., & Ungerleider, L. G. (2002). Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron, 35(5), 975–987.

    Article  PubMed  Google Scholar 

  • Qian, J., Zhang, K., Liu, S., & Lei, Q. (2019). The transition from feature to object: Storage unit in visual working memory depends on task difficulty. Memory and Cognition, 47(8), 1498–1514.

    Article  PubMed  Google Scholar 

  • Qian, J., Zhang, K., Wang, K., Li, J., & Lei, Q. (2018). Saturation and brightness modulate the effect of depth on visual working memory. Journal of Vision, 18(9), 16–16.

    Article  PubMed  Google Scholar 

  • Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin and Review, 18(2), 324–330.

    Article  PubMed  Google Scholar 

  • Schmiedek, F., Lövdén, M., & Lindenberger, U. (2010). Hundred days of cognitive training enhance broad cognitive abilities in adulthood: Findings from the COGITO study. Frontiers in Aging Neuroscience, 2, 27.

    PubMed  PubMed Central  Google Scholar 

  • Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (pp. 155–219). Lawrence Erlbaum Associates Publishers.

  • Schoups, A. A., Vogels, R., & Orban, G. A. (1995). Human perceptual learning in identifying the oblique orientation: Retinotopy, orientation specificity and monocularity. The Journal of Physiology, 483(3), 797–810.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwarb, H., Nail, J., & Schumacher, E. H. (2016). Working memory training improves visual short-term memory capacity. Psychological Research Psychologische Forschung, 80(1), 128–148.

    Article  PubMed  Google Scholar 

  • Shin, E., Lee, H., Yoo, S. A., & Chong, S. C. (2015). Training Improves the Capacity of Visual Working Memory When It Is Adaptive, Individualized, and Targeted. PLoS ONE, 10(4), 1–14.

    Article  Google Scholar 

  • Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, and Computers, 31(1), 137–149.

    Article  PubMed  Google Scholar 

  • Sungur, H., & Boduroglu, A. (2012). Action video game players form more detailed representation of objects. Acta Psychologica, 139(2), 327–334.

    Article  PubMed  Google Scholar 

  • Tan, Q., Wang, Z., Sasaki, Y., & Watanabe, T. (2019). Category-induced transfer of visual perceptual learning. Current Biology, 29(8), 1374–1378.

    Article  PubMed  Google Scholar 

  • Thompson, T. W., Waskom, M. L., Garel, K. L. A., Cardenas-Iniguez, C., Reynolds, G. O., Winter, R., et al. (2013). Failure of Working Memory Training to Enhance Cognition or Intelligence. PLoS ONE, 8(5), 1–15.

    Google Scholar 

  • Unsworth, N., Fukuda, K., Awh, E., & Vogel, E. K. (2015). Working memory delay activity predicts individual differences in cognitive abilities. Journal of Cognitive Neuroscience, 27(5), 853–865.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.

    Article  PubMed  Google Scholar 

  • Von Bastian, C. C., & Eschen, A. (2016). Does working memory training have to be adaptive? Psychological Research Psychologische Forschung, 80(2), 181–194.

    Article  Google Scholar 

  • Wass, S. V., Scerif, G., & Johnson, M. H. (2012). Training attentional control and working memory—is younger, better? Developmental Review, 32(4), 360–387.

    Article  Google Scholar 

  • Watanabe, T., Náñez, J. E., Koyama, S., Mukai, I., Liederman, J., & Sasaki, Y. (2002). Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task. Nature Neuroscience, 5(10), 1003–1009.

    Article  PubMed  Google Scholar 

  • Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M. L., Bartfai, A., et al. (2007). Computerized working memory training after stroke—a pilot study. Brain Injury, 21(1), 21–29.

    Article  PubMed  Google Scholar 

  • Westerberg, H., & Klingberg, T. (2007). Changes in cortical activity after training of working memory—a single-subject analysis. Physiology and Behavior, 92(1–2), 186–192.

    Article  PubMed  Google Scholar 

  • Wigfield, R., Gilbert, R., & Fleming, P. J. (1994). Sids: risk reduction measures. Early Human Development, 38(3), 161–164.

    Article  PubMed  Google Scholar 

  • Yotsumoto, Y., Sasaki, Y., Chan, P., Vasios, C. E., Bonmassar, G., Ito, N., et al. (2009). Location-specific cortical activation changes during sleep after training for perceptual learning. Current Biology, 19(15), 1278–1282.

    Article  PubMed  Google Scholar 

  • Zinke, K., Zeintl, M., Rose, N. S., Putzmann, J., Pydde, A., & Kliegel, M. (2014). Working memory training and transfer in older adults: effects of age, baseline performance, and training gains. Developmental Psychology, 50(1), 304.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (31500919) and the Fundamental Research Funds for the Central Universities (20wkzd12). The authors have no competing financial interests that might be perceived to influence the results and/or discussion reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiehui Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 811 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Qian, J. Training with high perceptual difficulty improves the capacity and fidelity of internal representation in VWM. Psychological Research 85, 2408–2419 (2021). https://doi.org/10.1007/s00426-020-01404-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-020-01404-2

Navigation