Skip to main content
Log in

Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

A distinct learning advantage has been shown when participants control their knowledge of results (KR) scheduling during practice compared to when the same KR schedule is imposed on the learner without choice (i.e., yoked schedules). Although the learning advantages of self-controlled KR schedules are well-documented, the brain regions contributing to these advantages remain unknown. Identifying key brain regions would not only advance our theoretical understanding of the mechanisms underlying self-controlled learning advantages, but would also highlight regions that could be targeted in more applied settings to boost the already beneficial effects of self-controlled KR schedules. Here, we investigated whether applying anodal transcranial direct current stimulation (tDCS) to the primary motor cortex (M1) would enhance the typically found benefits of learning a novel motor skill with a self-controlled KR schedule. Participants practiced a spatiotemporal task in one of four groups using a factorial combination of KR schedule (self-controlled vs. yoked) and tDCS (anodal vs. sham). Testing occurred on two consecutive days with spatial and temporal accuracy measured on both days and learning was assessed using 24-h retention and transfer tests without KR. All groups improved their performance in practice and a significant effect for practicing with a self-controlled KR schedule compared to a yoked schedule was found for temporal accuracy in transfer, but a similar advantage was not evident in retention. There were no significant differences as a function of KR schedule or tDCS for spatial accuracy in retention or transfer. The lack of a significant tDCS effect suggests that M1 may not strongly contribute to self-controlled KR learning advantages; however, caution is advised with this interpretation as typical self-controlled learning benefits were not strongly replicated in the present experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baraduc, P., Lang, N., Rothwell, J. C., & Wolpert, D. M. (2004). Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Current Biology, 14(3), 252–256. doi:10.1016/S0960-9822(04)00045-4.

    Article  PubMed  Google Scholar 

  • Bastian, A. J. (2008). Understanding sensorimotor adaptation and learning for rehabilitation. Current Opinion in Neurology, 21(6), 628–633. doi:10.1097/WCO.0b013e328315a293.Understanding.

    Article  PubMed  PubMed Central  Google Scholar 

  • Batsikadze, G., Moliadze, V., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. Journal of Physiology, 591(Pt 7), 1987–2000. doi:10.1113/jphysiol.2012.249730.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bund, A., & Wiemeyer, J. (2004). Self-controlled learning of a complex motor skill: Effects of the learners’ preferences on performance and self-efficacy. Journal of Human Movement Studies, 47(3), 215–236.

    Google Scholar 

  • Carlsen, A. N., Eagles, J. S., & MacKinnon, C. D. (2015). Transcranial direct current stimulation over the supplementary motor area modulates the preparatory activation level in the human motor system. Behavioural Brain Research, 279, 68–75. doi:10.1016/j.bbr.2014.11.009.

    Article  PubMed  Google Scholar 

  • Carlsen, A. N., Maslovat, D., & Franks, I. M. (2012). Preparation for voluntary movement in healthy and clinical populations: Evidence from startle. Clinical Neurophysiology, 123(1), 21–33. doi:10.1016/j.clinph.2011.04.028.

    Article  PubMed  Google Scholar 

  • Carter, M. J., Carlsen, A. N., & Ste-Marie, D. M. (2014). Self-controlled feedback is effective if it is based on the learner’s performance: A replication and extension of Chiviacowsky and Wulf (2005). Frontiers in Psychology, 5, 1325. doi:10.3389/fpsyg.2014.01325.

    PubMed  PubMed Central  Google Scholar 

  • Carter, M. J., Maslovat, D., & Carlsen, A. N. (2015). Anodal transcranial direct current stimulation applied over the supplementary motor area delays spontaneous antiphase-to-in-phase transitions. Journal of Neurophysiology, 113(3), 780–785. doi:10.1152/jn.00662.2014.

    Article  PubMed  Google Scholar 

  • Carter, M. J., Maslovat, D., & Carlsen, A. N. (2017). Intentional switches between coordination patterns are faster following anodal-tDCS applied over the supplementary motor area. Brain Stimulation, 10, 162–164. doi:10.1016/j.brs.2016.11.002.

    Article  PubMed  Google Scholar 

  • Carter, M. J., & Patterson, J. T. (2012). Self-controlled knowledge of results: Age-related differences in motor learning, strategies, and error detection. Human Movement Science, 31(6), 1459–1472. doi:10.1016/j.humov.2012.07.008.

    Article  PubMed  Google Scholar 

  • Carter, M. J., & Ste-Marie, D. M. (2017). An interpolated activity during the knowledge-of-results delay interval eliminates the learning advantages of self-controlled feedback schedules. Psychological Research, 81, 399–406. doi:10.1007/s00426-016-0757-2.

    Article  PubMed  Google Scholar 

  • Chiviacowsky, S. (2014). Self-controlled practice: Autonomy protects perceptions of competence and enhances motor learning. Psychology of Sport and Exercise, 15(5), 505–510. doi:10.1016/j.psychsport.2014.05.003.

    Article  Google Scholar 

  • Chiviacowsky, S., & Wulf, G. (2002). Self-controlled feedback: Does it enhance learning because performers get feedback when they need it? Research Quarterly for Exercise and Sport, 73(4), 408–415.

    Article  PubMed  Google Scholar 

  • Chiviacowsky, S., & Wulf, G. (2005). Self-controlled feedback is effective if it is based on the learner’s performance. Research Quarterly for Exercise and Sport, 76(1), 42–48.

    Article  PubMed  Google Scholar 

  • Chiviacowsky, S., Wulf, G., de Medeiros, F. L., Kaefer, A., & Wally, R. (2008). Self-controlled feedback in 10-year-old children: Higher feedback frequencies enhance learning. Research Quarterly for Exercise and Sport, 79(1), 122–127.

    PubMed  Google Scholar 

  • Chiviacowsky, S., Wulf, G., & Lewthwaite, R. (2012). Self-controlled learning: The importance of protecting perceptions of competence. Frontiers in Psychology, 3. doi:10.3389/Fpsyg.2012.00458.

    PubMed  PubMed Central  Google Scholar 

  • Christova, M., Rafolt, D., & Gallasch, E. (2015). Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behavioural Brain Research, 287, 27–33. doi:10.1016/j.bbr.2015.03.028.

    Article  PubMed  Google Scholar 

  • Cogiamanian, F., Marceglia, S., Ardolino, G., Barbieri, S., & Priori, A. (2007). Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. European Journal of Neuroscience, 26(1), 242–249. doi:10.1111/j.1460-9568.2007.05633.x.

    Article  PubMed  Google Scholar 

  • Criscimagna-Hemminger, S. E., Bastian, A. J., & Shadmehr, R. (2010). Size of error affects cerebellar contributions to motor learning. Journal of Neurophysiology, 103(4), 2275–2284. doi:10.1152/jn.00822.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cuypers, K., Leenus, D. J. F., den Berg, F. E., Nitsche, M. A., Thijs, H., Wenderoth, N., & Meesen, R. L. J. (2013). Is motor learning mediated by tDCS intensity?. PLos One, 8(6). doi:10.1371/journal.pone.0067344.

  • DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, (51). doi:10.3791/2744.

    PubMed  PubMed Central  Google Scholar 

  • Della-Maggiore, V., Malfait, N., Ostry, D. J., & Paus, T. (2004). Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. Journal of Neuroscience, 24(44), 9971–9976. doi:10.1523/JNEUROSCI.2833-04.2004.

    Article  PubMed  Google Scholar 

  • Fairbrother, J. T., Laughlin, D. D., & Nguyen, T. V. (2012). Self-controlled feedback facilitates motor learning in both high and low activity individuals. Frontiers in Psychology, 3, 323. doi:10.3389/fpsyg.2012.00323.

    Article  PubMed  PubMed Central  Google Scholar 

  • Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 37(12), 742–753. doi:10.1016/j.tins.2014.08.003.

    Article  PubMed  Google Scholar 

  • Fischman, M. G. (2015). On the continuing problem of inappropriate learning measures: Comment on Wulf et al. (2014) and Wulf et al. (2015). Human Movement Science, 42, 225–231. doi:10.1016/j.humov.2015.05.011.

    Article  PubMed  Google Scholar 

  • Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti, S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Movement Disorders, 21(10), 1693–1702. doi:10.1002/mds.21012.

    Article  PubMed  Google Scholar 

  • Gandiga, P. C., Hummel, F. C., & Cohen, L. G. (2006). Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clinical Neurophysiology, 117(4), 845–850. doi:10.1016/j.clinph.2005.12.003.

    Article  PubMed  Google Scholar 

  • Grand, K. F., Bruzi, A. T., Dyke, F. B., Godwin, M. M., Leiker, A. M., Thompson, A. G., et al. (2015). Why self-controlled feedback enhances motor learning: Answers from electroencephalography and indices of motivation. Human Movement Science, 43, 23–32. doi:10.1016/j.humov.2015.06.013.

    Article  PubMed  Google Scholar 

  • Hadipour-Niktarash, A., Lee, C. K., Desmond, J. E., & Shadmehr, R. (2007). Impairment of retention but not acquisition of a visuomotor skill through time-dependent disruption of primary motor cortex. Journal of Neuroscience, 27(49), 13413–13419. doi:10.1523/JNEUROSCI.2570-07.2007.

    Article  PubMed  Google Scholar 

  • Hanes, D. P., & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430.

    Article  PubMed  Google Scholar 

  • Hansen, S., Pfeiffer, J., & Patterson, J. T. (2011). Self-control of feedback during motor learning: Accounting for the absolute amount of feedback using a yoked group with self-control over feedback. Journal of Motor Behavior, 43(2), 113–119. doi:10.1080/00222895.2010.548421.

    Article  PubMed  Google Scholar 

  • Hashemirad, F., Zoghi, M., Fitzgerald, P. B., & Jaberzadeh, S. (2016). The effect of anodal transcranial direct current stimulation on motor sequence learning in healthy individuals: A systematic review and meta-analysis. Brain and Cognition, 102, 1–12. doi:10.1016/j.bandc.2015.11.005.

    Article  PubMed  Google Scholar 

  • Huet, M., Camachon, C., Fernandez, L., Jacobs, D. M., & Montagne, G. (2009). Self-controlled concurrent feedback and the education of attention towards perceptual invariants. Human Movement Science, 28(4), 450–467. doi:10.1016/j.humov.2008.12.004.

    Article  PubMed  Google Scholar 

  • Janelle, C. M., Barba, D. A., Frehlich, S. G., Tennant, L. K., & Cauraugh, J. H. (1997). Maximizing performance feedback effectiveness through videotape replay and a self-controlled learning environment. Research Quarterly for Exercise and Sport, 68(4), 269–279.

    Article  PubMed  Google Scholar 

  • Janelle, C. M., Kim, J., & Singer, R. N. (1995). Subject-controlled performance feedback and learning of a closed motor skill. Perceptual Motor Skills, 81(2), 627–634. doi:10.2466/pms.1995.81.2.627.

    Article  PubMed  Google Scholar 

  • Kantak, S. S., Mummidisetty, C. K., & Stinear, J. W. (2012). Primary motor and premotor cortex in implicit sequence learning—evidence for competition between implicit and explicit human motor memory systems. European Journal of Neuroscience, 36(5), 2710–2715. doi:10.1111/j.1460-9568.2012.08175.x.

    Article  PubMed  Google Scholar 

  • Kantak, S. S., Sullivan, K. J., Fisher, B. E., Knowlton, B. J., & Winstein, C. J. (2010). Neural substrates of motor memory consolidation depend on practice structure. Nature Neuroscience, 13(8), 923–925. doi:10.1038/Nn.2596.

    Article  PubMed  Google Scholar 

  • Kantak, S. S., & Winstein, C. J. (2012). Learning-performance distinction and memory processes for motor skills: A focused review and perspective. Behavioural Brain Research, 228(1), 219–231. doi:10.1016/j.bbr.2011.11.028.

    Article  PubMed  Google Scholar 

  • Kuo, H. I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M. F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644–648. doi:10.1016/j.brs.2012.09.010.

    Article  PubMed  Google Scholar 

  • Lewthwaite, R., & Wulf, G. (2012). Motor learning through a motivational lens. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn., pp. 173–191). London: Routledge.

    Google Scholar 

  • Lin, C. H., Fisher, B. E., Winstein, C. J., Wu, A. D., & Gordon, J. (2008). Contextual interference effect: Elaborative processing or forgetting-reconstruction? A post hoc analysis of transcranial magnetic stimulation-induced effects on motor learning. Journal of Motor Behavior, 40(6), 578–586. doi:10.3200/Jmbr.40.6.578-586.

    Article  PubMed  Google Scholar 

  • Lin, C. H., Fisher, B. E., Wu, A. D., Ko, Y. A., Lee, L. Y., & Winstein, C. J. (2009). Neural correlate of the contextual interference effect in motor learning: A kinematic analysis. Journal of Motor Behavior, 41(3), 232–242.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin, C. H., Winstein, C. J., Fisher, B. E., & Wu, A. D. (2010). Neural correlates of the contextual interference effect in motor learning: A transcranial magnetic stimulation investigation. Journal of Motor Behavior, 42(4), 223–232.

    Article  PubMed  Google Scholar 

  • Luft, C. D. (2014). Learning from feedback: The neural mechanisms of feedback processing facilitating better performance. Behavioural Brain Research, 261, 356–368. doi:10.1016/j.bbr.2013.12.043.

    Article  PubMed  Google Scholar 

  • Magill, R. A. (1988). Activity during the post-knowledge of results interval can benefit motor skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 231–246). Elsevier Science Publishers B.V: North Holland.

    Chapter  Google Scholar 

  • Magill, R. A., & Anderson, D. I. (2013). The roles and uses of augmented feedback in motor skill acquisition. In N. J. Hodges & A. M. Williams (Eds.), Skill acquisition in sport: Research, theory, and practice (2nd edn.). New York: Routledge.

    Google Scholar 

  • Marquez, C. M. S., Zhang, X., Swinnen, S. P., Meesen, R., & Wenderoth, N. (2013). Task-specific effect of transcranial direct current stimulation on motor learning. Frontiers in Human Neuroscience, 7. doi:10.3389/Fnhum.2013.00333.

  • McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends in Cognitive Sciences, 20, 535–544. doi:10.1016/j.tics.2016.05.002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control. Neural Networks, 9(8), 1265–1279.

    Article  PubMed  Google Scholar 

  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., et al. (2002). Early consolidation in human primary motor cortex. Nature, 415(6872), 640–644. doi:10.1038/Nature712.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., et al. (2008). Transcranial direct current stimulation: State of the art 2008. Brain Stimulation, 1(3), 206–223. doi:10.1016/j.brs.2008.06.004.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527 Pt 3, 633–639.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.

    Article  PubMed  Google Scholar 

  • Nitsche, M. A., Schauenburg, A., Lang, N., Liebetanz, D., Exner, C., Paulus, W., & Tergau, F. (2003). Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience, 15(4), 619–626. doi:10.1162/089892903321662994.

    Article  PubMed  Google Scholar 

  • O’Connell, N. E., Cossar, J., Marston, L., Wand, B. M., Bunce, D., Moseley, G. L., & de Souza, L. H. (2012). Rethinking clinical trials of transcranial direct current stimulation: Participant and assessor blinding is inadequate at intensities of 2 mA. PLoS One, 7(10). doi:10.1371/journal.pone.0047514.

  • Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., et al. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage, 21(1), 99–111.

    Article  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9(1), 97–113. doi:10.1016/0028-3932(71)90067-4.

    Article  PubMed  Google Scholar 

  • Patterson, J. T., & Carter, M. (2010). Learner regulated knowledge of results during the acquisition of multiple timing goals. Human Movement Science, 29(2), 214–227. doi:10.1016/j.humov.2009.12.003.

    Article  PubMed  Google Scholar 

  • Patterson, J. T., Carter, M., & Sanli, E. (2011). Decreasing the proportion of self-control trials during the acquisition period does not compromise the learning advantages in a self-controlled context. Research Quarterly for Exercise and Sport, 82(4), 624–633.

    Article  PubMed  Google Scholar 

  • Patterson, J. T., & Lee, T. D. (2008). Examining the proactive and retroactive placement of augmented information for learning a novel computer alphabet. Canadian Journal of Experimental Psychology, 62(1), 42–50. doi:10.1037/1196-1961.62.1.42.

    Article  PubMed  Google Scholar 

  • Patterson, J. T., & Lee, T. D. (2010). Self-regulated frequency of augmented information in skill learning. Canadian Journal of Experimental Psychology, 64(1), 33–40. doi:10.1037/A0016269.

    Article  PubMed  Google Scholar 

  • Post, P. G., Fairbrother, J. T., & Barros, J. A. C. (2011). Self-controlled amount of practice benefits learning of a motor skill. Research Quarterly for Exercise and Sport, 82(3), 474–481.

    Article  PubMed  Google Scholar 

  • Reis, J., & Fritsch, B. (2011). Modulation of motor performance and motor learning by transcranial direct current stimulation. Current Opinion in Neurology, 24(6), 590–596. doi:10.1097/WCO.0b013e32834c3db0.

    Article  PubMed  Google Scholar 

  • Reis, J., Robertson, E., Krakauer, J. W., Rothwell, J., Marshall, L., Gerloff, C., et al. (2008). Consensus: “Can tDCS and TMS enhance motor learning and memory formation?” Brain Stimulation, 1(4), 363–369. doi:10.1016/j.brs.2008.08.001.

    Article  PubMed Central  Google Scholar 

  • Reis, J., Schambra, H. M., Cohen, L. G., Buch, E. R., Fritsch, B., Zarahn, E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proceedings of the National Academy of Sciences of the United States of America, 106(5), 1590–1595. doi:10.1073/pnas.0805413106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richardson, A. G., Overduin, S. A., Valero-Cabré, A., Padoa-Schioppa, C., Pascual-Leone, A., Bizzi, E., & Press, D. Z. (2006). Disruption of primary motor cortex before learning impairs memory of movement dynamics. The Journal of neuroscience†¯, 26(48), 12466–12470. doi:10.1523/JNEUROSCI.1139-06.2006.

    Google Scholar 

  • Rossi, S., Hallett, M., Rossini, P. M., Pascual-Leone, A., & Group, S. T. M. S. C. (2009). Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiology, 120(12), 2008–2039. doi:10.1016/j.clinph.2009.08.016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Russo, R., Wallace, D., Fitzgerald, P. B., & Cooper, N. R. (2013). Perception of comfort during active and sham transcranial direct current stimulation: A double blind study. Brain Stimulation, 6(6), 946–951. doi:10.1016/j.brs.2013.05.009.

    Article  PubMed  Google Scholar 

  • Sanli, E. A., & Lee, T. D. (2013). Yoked versus self-controlled practice schedules and performance on dual-task transfer tests. The Open Sports Sciences Journal, 6, 62–69. doi:10.2174/1875399X01306010062.

    Article  Google Scholar 

  • Sanli, E. A., Patterson, J. T., Bray, S. R., & Lee, T. D. (2013). Understanding self-controlled motor learning protocols through the self-determination theory. Frontiers in Psychology, 3, 611. doi:10.3389/fpsyg.2012.00611.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmidt, R. A. (1975). Schema theory of discrete motor skill learning. Psychological Review, 82(4), 225–260. doi:10.1037/H0076770.

    Article  Google Scholar 

  • Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggests new concepts for training. Psychological Science, 3(4), 207–217. doi:10.1111/j.1467-9280.1992.tb00029.x.

    Article  Google Scholar 

  • Schmidt, R. A., & Lee, T. D. (2011). Motor control and learning: A behavioral emphasis (5th edn.). Champaign: Human Kinetics.

    Google Scholar 

  • Schulz, R., Gerloff, C., & Hummel, F. C. (2013). Non-invasive brain stimulation in neurological diseases. Neuropharmacology, 64, 579–587. doi:10.1016/j.neuropharm.2012.05.016.

    Article  PubMed  Google Scholar 

  • Sherwood, D. E. (2010). Detecting and correcting errors in rapid aiming movements: Effects of movement time, distance, and velocity. Research Quarterly for Exercise and Sport, 81(3), 300–309. doi:10.1080/02701367.2010.10599678.

    PubMed  Google Scholar 

  • Sriraman, A., Oishi, T., & Madhavan, S. (2014). Timing-dependent priming effects of tDCS on ankle motor skill learning. Brain Research, 1581, 23–29. doi:10.1016/j.brainres.2014.07.021.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stagg, C. J., Jayaram, G., Pastor, D., Kincses, Z. T., Matthews, P. M., & Johansen-Berg, H. (2011). Polarity and timing-dependent effects of transcranial direct current stimulation in explicit motor learning. Neuropsychologia, 49(5), 800–804. doi:10.1016/j.neuropsychologia.2011.02.009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ste-Marie, D. M., Carter, M. J., Law, B., Vertes, K. A., & Smith, V. (2015). Self-controlled learning benefits: Examining the contributions of self-efficacy and intrinsic motivation via path analysis. Journal of Sport Sciences. doi:10.1080/02640414.2015.1130236.

    Google Scholar 

  • Ste-Marie, D. M., Vertes, K. A., Law, B., & Rymal, A. M. (2013). Learner-controlled self-observation is advantageous for motor skill acquisition. Frontiers in Psychology, 3, 556. doi:10.3389/fpsyg.2012.00556.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stock, A. K., Wascher, E., & Beste, C. (2013). Differential effects of motor efference copies and proprioceptive information on response evaluation processes. PLos One, 8(4), e62335. doi:10.1371/journal.pone.0062335.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swinnen, S. P. (1988). Post-performance activities and skill learning. In O. G. Meijer & K. Roth (Eds.), Complex motor behaviour: The motor-action controversy (pp. 315–338). Elsevier Science Publishers B.V: North Holland.

    Chapter  Google Scholar 

  • Swinnen, S. P. (1996). Information feedback for motor skill learning: A review. In H. N. Zelaznik (Ed.), Advances in motor learning and control (pp. 37–66). Champaign: Human Kinetics.

    Google Scholar 

  • Tecchio, F., Zappasodi, F., Assenza, G., Tombini, M., Vollaro, S., Barbati, G., & Rossini, P. M. (2010). Anodal transcranial direct current stimulation enhances procedural consolidation. Journal of Neurophysiology, 104(2), 1134–1140. doi:10.1152/jn.00661.2009.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739–751. doi:10.1038/nrn3112.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2(9), 338–347.

    Article  PubMed  Google Scholar 

  • Woods, A. J., Antal, A., Bikson, M., Boggio, P. S., Brunoni, A. R., Celnik, P., et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology. doi:10.1016/j.clinph.2015.11.012.

    PubMed  Google Scholar 

  • Wulf, G., & Lewthwaite, R. (2016). Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychonomic Bulletin and Review. doi:10.3758/s13423-015-0999-9.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Carter.

Ethics declarations

Funding

Supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Alexander Graham Bell Canada Graduate Scholarship (MJC) and an NSERC Discovery Grant (ANC; RGPIN 418361-2012).

Conflict of interest

None.

Ethical standards

All participants gave written informed consent prior to inclusion in the studies and the studies were conducted in accordance with the ethical guidelines of the University, and hence with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Additional information

At the time of data collection, Michael J. Carter was with the School of Human Kinetics at the University of Ottawa. He is now with the Centre for Neuroscience Studies at Queen’s University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carter, M.J., Smith, V., Carlsen, A.N. et al. Anodal transcranial direct current stimulation over the primary motor cortex does not enhance the learning benefits of self-controlled feedback schedules. Psychological Research 82, 496–506 (2018). https://doi.org/10.1007/s00426-017-0846-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-017-0846-x

Navigation