Skip to main content
Log in

A review of ideomotor approaches to perception, cognition, action, and language: advancing a cultural recycling hypothesis

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The term “cultural recycling” derives from the neuronal recycling hypothesis, which suggests that representations of cultural inventions like written words, Arabic numbers, or tools can occupy brain areas dedicated to other functions. In the present selective review article, we propose a recycling hypothesis for the ideomotor mechanism. The ideomotor approach assumes that motor actions are controlled by the anticipation of the expected perceptual consequences that they aim to generate in the environment. Arguably, such action–perception mechanisms contribute to motor behaviour for human and non-human animals since millions of years. However, recent empirical studies suggest that the ideomotor mechanism can also contribute to word processing, number representation, and arithmetic. For instance, it has been shown that the anticipatory simulation of abstract semantics, like the numerical quantitative value of three items can prime processing of the associated Arabic number “3”. Arabic numbers, words, or tools represent cultural inventions, so that, from a theoretical perspective, we suggest an ideomotor recycling hypothesis for the interaction with such artefacts. In this view, the ideomotor mechanism spreads its influence to other functions beyond motor control, and is recycled to flexibly adapt different human behaviours towards dealing with more abstract concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M. L. (2010). Neural reuse: a fundamental organizational principle of the brain. Behavioral and Brain Sciences, 33, 245–313.

    Article  PubMed  Google Scholar 

  • Anderson, M. L., & Penner-Wilger, M. (2013). Neural reuse in the evolution and development of the brain: evidence for developmental homology? Developmental Psychobiology, 55, 42–51.

    Article  PubMed  Google Scholar 

  • Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. NeuroReport, 15, 2773–2777.

    PubMed  Google Scholar 

  • Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. NeuroImage, 62, 1520–1528.

    Article  PubMed  Google Scholar 

  • Andres, M., Olivier, E., & Badets, A. (2008). Action, words and numbers: a motor contribution to semantic processing? Current Directions in Psychological Science, 17(5), 313–317.

    Article  Google Scholar 

  • Badets, A. (2013). Semantic sides of three-dimensional space representation. Behavioral and Brain Sciences, 36, 543.

    Article  PubMed  Google Scholar 

  • Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180, 525–534.

    Article  PubMed  Google Scholar 

  • Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60, 34–43.

    Article  PubMed  Google Scholar 

  • Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115, 46–53.

    Article  PubMed  Google Scholar 

  • Badets, A., & Pesenti, M. (2011). Finger–number interaction: an ideomotor account. Experimental Psychology, 58, 287–292.

    Article  PubMed  Google Scholar 

  • Badets, A., Pesenti, M., & Olivier, E. (2010). Response–effect compatibility of finger-numeral configurations in arithmetical context. The Quarterly Journal of Experimental Psychology, 63, 16–22.

    Article  PubMed  Google Scholar 

  • Baroody, A. J. (1987). Children’s mathematical thinking: a developmental framework for preschool, primary and special education teachers. New York, NY: Teacher’s College Press.

    Google Scholar 

  • Beck, B. B. (1980). Animal tool use behavior: The use and manufacture of tools by animals. New York: Garland STPM Press.

    Google Scholar 

  • Berwick, R. C., Friederici, A. D., Chomsky, N., & Bolhuis, J. J. (2013). Evolution, brain, and the nature of language. Trends in Cognitive Sciences, 17, 89–98.

    Article  PubMed  Google Scholar 

  • Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767–2796.

    Article  PubMed  PubMed Central  Google Scholar 

  • Binkofski, F., Buccino, G., Posse, S., Seitz, R. J., Rizzolatti, G., & Freund, H. (1999). A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. European Journal of Neuroscience, 11, 3276–3286.

    Article  PubMed  Google Scholar 

  • Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B, 364, 1831–1840.

    Article  Google Scholar 

  • Butterworth, B. (1999). The mathematical brain. Macmillan.

  • Caligiore, D., & Fischer, M. H. (2013). Vision, action and language unified through embodiment. Psychological Research, 77, 1–6.

    Article  PubMed  Google Scholar 

  • Chiou, R. Y., Chang, E. C., Tzeng, O. J. L., & Wu, D. H. (2009). The common magnitude code underlying numerical and size processing for action but not for perception. Experimental Brain Research, 194, 553–562.

    Article  PubMed  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2001). Common codes for situated interaction. Behavioral and Brain Sciences, 24, 883–884.

    Article  Google Scholar 

  • Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. NeuroImage, 22, 466–476.

    Article  PubMed  Google Scholar 

  • Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI evidence for a ‘‘parietal reach region” in the human brain. Experimental Brain Research, 153, 140–145.

    Article  PubMed  Google Scholar 

  • Corballis, M. C. (2013). Mental time travel: a case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6.

    Article  PubMed  Google Scholar 

  • Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research, 153, 180–189.

    Article  PubMed  Google Scholar 

  • Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.

    Book  Google Scholar 

  • Dehaene, S. (2005). Evolution of human cortical circuits for reading and arithmetic: The ‘‘neuronal recycling’’ hypothesis. In S. Dehaene, J. R. Duhamel, M. Hauser, & G. Rizzolatti (Eds.), From monkey brain to human brain (pp. 133–157). Cambridge, MA: MIT Press.

    Google Scholar 

  • Dehaene, S. (2007). Les neurones de la lecture. Odile Jacob.

  • Dehaene, S. (2009). Reading in the brain. Penguin Viking.

  • Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron, 56, 384–398.

    Article  PubMed  Google Scholar 

  • Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15, 254–262.

    Article  PubMed  Google Scholar 

  • Dehaene, S., Tzourio, N., Frak, F., Raynaud, L., Mehler, J., & Mazoyer, B. (1996). Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia, 34, 1097–1106.

    Article  PubMed  Google Scholar 

  • Di Luca, S., Granà, A., Semenza, C., Seron, X., & Pesenti, M. (2006). Finger-digit compatibility in Arabic numeral processing. The Quarterly Journal of Experimental Psychology, 59, 1648–1663.

    Article  PubMed  Google Scholar 

  • Di Luca, S., Lefèvre, N., & Pesenti, M. (2010). Place and summation coding for canonical and non-canonical finger numeral representations. Cognition, 117, 95–100.

    Article  PubMed  Google Scholar 

  • Domahs, F., Krinzinger, H., & Willmes, K. (2008). Mind the gap between both hands: evidence for internal finger-based number representations in children’s mental calculation. Cortex, 44, 359–367.

    Article  PubMed  Google Scholar 

  • Elsner, B., & Hommel, B. (2001). Effect anticipation and action control. Journal of Experimental Psychology: Human Perception and Performance, 27, 229–240.

    PubMed  Google Scholar 

  • Fischer, M. H., & Brugger, P. (2011). When digits help digits: spatial-numerical associations point to finger counting as prime example of embodied cognition. Frontiers in Psychology, 2, 260. doi:10.3389/fpsyg.2011.00260.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6(6), 555–556. doi:10.1038/nn1066.

  • Gallese, V. (2008). Mirror neurons and the social nature of language: the neural exploitation hypothesis. Social Neuroscience, 3, 317–333.

    Article  PubMed  Google Scholar 

  • Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22, 455–479.

    Article  PubMed  Google Scholar 

  • Garrod, S., & Pickering, M. J. (2004). Why is conversation so easy? Trends in Cognitive Sciences, 8, 8–11.

    Article  PubMed  Google Scholar 

  • Gibson, K. R. (1993). Generative interplay between technical capacities, social relations, imitation and cognition. In K. R. Gibson & T. Ingold (Eds.), Tools, language and cognition in human evolution (pp. 251–269). New York: Cambridge University Press.

    Google Scholar 

  • Gracia-Bafalluy, M., & Noël, M. P. (2008). Does finger training increase young children’s numerical performance? Cortex, 44, 368–375.

    Article  PubMed  Google Scholar 

  • Greenwald, A. G. (1970). Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychological Review, 77, 73–99.

    Article  PubMed  Google Scholar 

  • Hamilton, A. F., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of Neuroscience, 26, 1133–1137.

    Article  PubMed  Google Scholar 

  • Hartsuiker, R. J., & Pickering, M. J. (2001). A common framework for language comprehension and language production? Behavioral and Brain Sciences, 24, 887–888.

    Google Scholar 

  • Herwig, A., & Waszak, F. (2009). Intention and attention in ideomotor learning. Quarterly Journal of Experimental Psychology, 62(2), 219–227.

    Article  Google Scholar 

  • Hommel, B., Alonso, D., & Fuentes, L. J. (2003). Acquisition and generalization of action effects. Visual Cognition, 10, 965–986.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): a framework for perception and action planning. Behavioural and Brain Sciences, 24, 849–878.

    Article  Google Scholar 

  • Hubbard, J., Gazzaley, A., & Morsella, E. (2011). Traditional response interference from anticipated action outcomes: a response-effect compatibility paradigm. Acta Psychologia, 138, 106–110.

    Article  Google Scholar 

  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in the parietal cortex. Nature Reviews Neuroscience, 6, 435–448.

    Article  PubMed  Google Scholar 

  • Hurley, S. L. (2008). The shared circuits model (SCM): how control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31, 1–58.

    Article  PubMed  Google Scholar 

  • James, W. (1890). The principles of psychology (Vol. 2). New York: Dover Publications.

    Book  Google Scholar 

  • Kashima, Y., Bekkering, H., & Kashima, E. S. (2013). Communicative intentions can modulate the linguistic perception-action link. Behavioral and Brain Sciences, 36, 33–34.

    Article  Google Scholar 

  • Keller, P. E., & Koch, I. (2006). Exogenous and endogenous response priming with auditory stimuli. Advances in Cognitive Psychology, 2, 269–276.

    Article  Google Scholar 

  • Klein, E., Moeller, K., Willmes, K., Nuerk, H. C., & Domahs, F. (2011). The influence of implicit hand-based representations on mental arithmetic. Frontiers in Psychology, 2, 197. doi:10.3389/fpsyg.2011.00197.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch, I., Keller, P., & Prinz, W. (2004). The ideomotor approach to action control: implications for skilled performance. International Journal of Sport and Exercise Psychology, 2, 362–375.

    Article  Google Scholar 

  • Koch, I., & Kunde, W. (2002). Verbal response–effect compatibility. Memory and Cognition, 30, 1297–1303.

    Article  PubMed  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility–a model and taxonomy. Psychological Review, 97, 253–270.

    Article  PubMed  Google Scholar 

  • Kunde, W. (2001). Response–effect compatibility in manual choice reaction tasks. Journal of Experimental Psychology: Human Perception and Performance, 27, 387–394.

    PubMed  Google Scholar 

  • Kunde, W., Elsner, K., & Kiesel, A. (2007a). No anticipation–no action: the role of anticipation in action and perception. Cognitive Processing, 8, 71–78.

    Article  PubMed  Google Scholar 

  • Kunde, W., Koch, I., & Hoffmann, J. (2004). Anticipated action effects affect the selection, initiation, and execution of actions. Quarterly Journal of Experimental Psychology, 57A, 87–106.

    Article  Google Scholar 

  • Kunde, W., Müsseler, J., & Heuer, H. (2007b). Spatial compatibility effects with tool use. Human Factors, 49, 661–670.

    Article  PubMed  Google Scholar 

  • Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology: Human Perception and Performance, 33, 1400–1409.

    PubMed  Google Scholar 

  • Massen, C., & Prinz, W. (2007). Activation of actions rules in action observation. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33, 1118–1130.

    Article  PubMed  Google Scholar 

  • Massen, C., & Prinz, W. (2009). Movements, actions and tool-use actions: an ideomotor approach to imitation. Philosophical Transactions of the Royal Society of London. Series B, 364, 2349–2358.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meck, W. H. (1985). Postreinforcement signal-processing. Journal of Experimental Psychology: Animal Behavior Processes, 11, 52–70.

    PubMed  Google Scholar 

  • Melcher, T., Weidema, M., Eenhuistra, R. M., Hommel, B., & Gruber, O. (2008). The neural substrate of the ideomotor principle: an event-related fMRI analysis. NeuroImage, 39, 1274–1288.

    Article  PubMed  Google Scholar 

  • Meteyard, L., Rodriguez Cuadrado, S., Bahrami, B., & Vigliocco, G. (2012). Coming of age: a review of embodiment and the neuroscience of semantics. Cortex, 48, 88–804.

    Article  Google Scholar 

  • Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188, 505–515.

    Article  PubMed  Google Scholar 

  • Nattkemper, D., Ziessler, M., & Frensch, P. A. (2010). Binding in voluntary action control. Neuroscience and Biobehavioral Reviews, 34, 1092–1101.

    Article  PubMed  Google Scholar 

  • Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.

    Article  PubMed  Google Scholar 

  • Nieder, A., & Miller, E. K. (2004). A parieto-frontal network for visual numerical information in the monkey. Proceedings of the National Academy of Sciences of the United States of America, 101, 7457–7462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osiurak, F. (2014). What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, Space, Time and Effort. Neuropsychology Review, 24, 88–115.

    Article  PubMed  Google Scholar 

  • Osiurak, F., & Badets, A. (2014). Pliers, not fingers: tool-action effect in a motor intention paradigm. Cognition, 130, 66–73.

    Article  PubMed  Google Scholar 

  • Pesenti, M., Thioux, M., Seron, X., & De Volder, A. (2000). Neuroanatomical substrate of Arabic number processing, numerical comparison and simple addition: a PET study. Journal of Cognitive Neuroscience, 121, 461–479.

    Article  Google Scholar 

  • Pfister, R., Janczyk, M., Gressmann, M., Fournier, L. R., & Kunde, W. (2014). Good vibrations? Vibrotactile self-stimulation reveals anticipation of body-related action effects in motor control. Experimental Brain Research, 232, 847–854.

    Article  PubMed  Google Scholar 

  • Pickering, M. J., & Garrod, S. (2013). An integrated theory of language production and comprehension. Behavioral and brain sciences, 36, 329-347. doi:10.1017/S0140525X12001495.

  • Press, C. (2011). Action observation and robotic agents: learning and anthropomorphism. Neuroscience and Biobehavioral Reviews, 35, 1410–1418.

    Article  PubMed  Google Scholar 

  • Price, C. J., & Devlin, J. T. (2003). The myth of the visual word form area. NeuroImage, 19, 473–481.

    Article  PubMed  Google Scholar 

  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9, 129–154.

    Article  Google Scholar 

  • Prinz, W., Aschersleben, G., & Koch, I. (2009). Cognition and action. In E. Morsella, J. Bargh, & P. M. Gollwitzer (Eds.), The Psychology of Action (Vol. 2, pp. 35–71)., Mechanisms of Human Action Oxford: Oxford University Press.

    Google Scholar 

  • Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. The Journal of Neuroscience, 16, 5205–5215.

    PubMed  Google Scholar 

  • Raos, V., Umiltá, M. A., Murata, A., Fogassi, L., & Gallese, V. (2006). Functional properties of grasping-related neurons in the ventral premotor area F5 of the macaque monkey. Journal of Neurophysiology, 95, 709–729.

    Article  PubMed  Google Scholar 

  • Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 1779–1790.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neuroscience, 21, 188–194.

    Article  Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264–274.

    Article  PubMed  Google Scholar 

  • Sawamura, H., Shima, K., & Tanji, J. (2002). Numerical representation for action in the parietal cortex of the monkey. Nature, 415, 918–922.

    Article  PubMed  Google Scholar 

  • Schütz-Bosbach, S., & Prinz, W. (2007). Perceptual resonance: action-induced modulation of perception. Trends in Cognitive Sciences, 11, 349–355.

    Article  PubMed  Google Scholar 

  • Shin, Y. K., Proctor, R. W., & Capaldi, E. J. (2010). A review of contemporary ideomotor theory. Psychological Bulletin, 136, 943–974.

    Article  PubMed  Google Scholar 

  • Stock, A., & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188.

    Article  PubMed  Google Scholar 

  • Sutter, C., Ladwig, S., Oehl, M., & Müsseler, J. (2012). Age effects on controlling tools with sensorimotor transformations. Frontiers in Psychology, 3, 573. doi:10.3389/fpsyg.2012.00573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson, R. F., Mayers, K. S., Robertson, R. T., & Patterson, C. J. (1970). Number coding in association cortex of the cat. Science, 168, 271–273.

    Article  PubMed  Google Scholar 

  • Umiltà, M., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. (2008). How pliers become fingers in the monkey motor system. Proceedings of the National Academy of Science, 105, 2209–2213.

    Article  Google Scholar 

  • Umiltà, C., Priftis, K., & Zorzi, M. (2009). The spatial representation of numbers: evidence from neglect and pseudoneglect. Experimental Brain Research, 192, 561–569.

    Article  PubMed  Google Scholar 

  • Vigneau, M., Jobard, G., Mazoyer, B., & Tzourio-Mazoyer, N. (2005). Word and non-word reading: what role for the visual word form area? NeuroImage, 27, 694–705.

    Article  PubMed  Google Scholar 

  • Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Science, 7, 483–488.

    Article  Google Scholar 

  • Waszak, F., Cardoso-Leite, P., & Hughes, G. (2012). Action effect anticipation: neurophysiological basis and functional consequences. Neuroscience and Biobehavioral Reviews, 36, 943–959.

    Article  PubMed  Google Scholar 

  • Waszak, F., Wascher, E., Keller, P., Koch, I., Aschersleben, G., Rosenbaum, D. A., & Prinz, W. (2005). Intention-based and stimulus-based mechanisms in action selection. Experimental Brain Research, 162, 346–356.

    Article  PubMed  Google Scholar 

  • Wolpert, D. M., Ghahramani, Z., & Flanagan, J. R. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences, 5, 487–494.

    Article  PubMed  Google Scholar 

  • Wood, G., Nuerk, H. C., Willmes, K., & Fischer, M. H. (2008). On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychology Science Quarterly, 50, 489–525.

    Google Scholar 

  • Ziessler, M., Nattkemper, D., & Frensch, P. A. (2004). The role of anticipation and intention in the learning of effects of self-performed actions. Psychological Research, 68, 163–175.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Badets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badets, A., Koch, I. & Philipp, A.M. A review of ideomotor approaches to perception, cognition, action, and language: advancing a cultural recycling hypothesis. Psychological Research 80, 1–15 (2016). https://doi.org/10.1007/s00426-014-0643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0643-8

Keywords

Navigation