Skip to main content
Log in

Speed-accuracy modulation in case of conflict: the roles of activation and inhibition

Psychological Research Aims and scope Submit manuscript

Abstract.

This study investigated how the speed-accuracy balance is modulated by changes in the time course of motor activation and inhibition of a primed response. Responses and event-related brain potentials were recorded in a paradigm in which the first stimulus indicated the correct response with 80% validity. The remaining 20% of the trials required no response (no-go) or a response opposite to the cued hand (change trials). Subjects were instructed either to balance speed and accuracy or to emphasize speed at the cost of accuracy. Analyses of error patterns, reaction time distributions and brain potentials show that subjects can modulate the amount of activation of the primed response. More surprisingly, the engagement of inhibition of the response also varied with the speed-accuracy instruction. The results are consistent with a model where the frontothalamic loop actively controls both the activation and the inhibition of responses, depending on the current task requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. The current paradigm did not permit a similar analysis of the interval between LRP onset and RT because preliminary activation can start affecting the LRP as soon as S1 is presented, whereas response execution was not supposed to take place until after S2. In fact, the LRP–RT interval was longer for speed (131 ms) than for balance instructions (96 ms), t(23)=1.73, p<0.05. This can be explained by arguing that preliminary activation started longer before S2 in the speed than in the balance condition, which would imply that the absolute LRP onset latency is sensitive to SAT. Because execution was postponed until after S2, the onset-to-execution time overestimated the amount of time required for execution, and more so for the speed instruction.

References

  • Band, G. P. H. & Van Boxtel, G. J. M. (1999). Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychologica, 101, 179–211.

    Article  PubMed  Google Scholar 

  • Bruin, K. J., Wijers, A. A., & Van Staveren, A. S. J. (2001). Response priming in a go/nogo task: do we have to explain the go/nogo N2 effect in terms of response activation instead of inhibition? Clinical Neurophysiology, 112, 1660–1671.

  • Brunia, C. H. M. (1993). Waiting in readiness: gating in attention and motor preparation. Psychophysiology, 30, 327–339.

    Article  PubMed  Google Scholar 

  • Brunia, C. H. M. & Vingerhoets, A. J. (1980). CNV and EMG preceding a plantar flexion of the foot. Biological Psychology, 11, 181–191.

    Article  PubMed  Google Scholar 

  • Burle, B., Possamaï, C.-A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: an electromyographic and distributional analysis. Psychological Research, 66, 324–336.

    Article  PubMed  Google Scholar 

  • Coles, M. G. H. (1989). Modern mind-brain reading: psychophysiology, physiology and cognition. Psychophysiology, 26, 251–269.

    Article  PubMed  Google Scholar 

  • De Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. M. (1988). Use of partial stimulus information in response processing. Journal of Experimental Psychology: Human Perception and Performance, 14, 682–692.

    PubMed  Google Scholar 

  • De Jong, R., Liang, C.-C., & Lauber, E. (1994). Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus-response correspondence. Journal of Experimental Psychology: Human Perception and Performance, 20, 731–750.

  • De Jong, R., Coles, M. G. H., & Logan, G. D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. Journal of Experimental Psychology: Human Perception and Performance, 21, 498–511.

    PubMed  Google Scholar 

  • Di Lazzaro, V., Oliviero, A., Profice, P., Insola, A., Mazzone, P., Tonali, P., & Rothwell, J. C. (1999). Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 124, 520–524.

  • Eimer, M. (1999). Facilitatory and inhibitory effects of masked prime stimuli on motor activation and behavioural performance. Acta Psychologica, 101, 293–313.

    Article  PubMed  Google Scholar 

  • Eimer, M. & Schlaghecken, F. (1998). Effects of masked stimuli on motor activation: behavioral and electrophysiological evidence. Journal of Experimental Psychology: Human Perception and Performance, 24, 1737–1747.

    PubMed  Google Scholar 

  • Eimer, M. & Schlaghecken, F. (2001). Partial response activation to masked primes is not dependent on response readiness. Perceptual and Motor Skills, 92, 208–222.

    Article  PubMed  Google Scholar 

  • Falkenstein, M., Koshlykova, N. A., Kiroj, V. N., Hoormann, J., & Hohnsbein, J. (1995). Late ERP components in visual and auditory go/nogo tasks. Electroencephalography and clinical neurophysiology, 96, 36–43.

    Article  PubMed  Google Scholar 

  • Gaillard, A. W. K. & Perdok, J. (1980). Slow brain potentials in the CNV-paradigm. Acta Psychologica, 44, 147–163.

    Article  PubMed  Google Scholar 

  • Gratton, G., Coles, M. G. H., Sirevaag, E., Eriksen, C. W., & Donchin, E. (1988). Pre- and post-stimulus activation of response channels: a psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331–344.

    PubMed  Google Scholar 

  • Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121, 480–506.

    Article  PubMed  Google Scholar 

  • Heil, M., Osman, A., Wiegelmann, J., Rolke, B., & Hennighausen, E. (2000). N200 in the Eriksen-task: inhibitory executive process? Journal of Psychophysiology, 14, 218–225.

    Article  Google Scholar 

  • Hommel, B. (1993). The relationship between stimulus processing and response selection in the Simon task: evidence for a temporal overlap. Psychological Research, 55, 280–290.

    Article  Google Scholar 

  • JaZZZ;kowski, P., Van der Lubbe, R. H. J., Wauschkuhn, B., Wascher, E., & Verleger, R. (2000). The influence of time pressure and cue validity on response force in an S1–S2 paradigm. Acta Psychologica, 105, 89–105.

    Article  Google Scholar 

  • Jodo, E. & Kayama, Y. (1992). Relation of a negative ERP component to response inhibition in a go/no-go task. Electroencephalography and clinical Neurophysiology, 82, 477–482.

    Article  PubMed  Google Scholar 

  • Kok, A. (1986). Effects of degradation of visual stimuli on components of the event-related potential (ERP) in go/no-go reaction tasks. Biological Psychology, 23, 21–38.

    Article  PubMed  Google Scholar 

  • Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996b). N2, P3 and the lateralized readiness potential in a no-go task involving selective response priming. Electroencephalography and clinical neurophysiology, 99, 19–27.

    Article  PubMed  Google Scholar 

  • Kopp, B., Rist, F., & Mattler, U. (1996a). N200 in the flanker task as a neurobehavioral tool for investigating executive control. Psychophysiology, 33, 282–294.

    Article  Google Scholar 

  • Kornblum, S., Hasbroucq, T., & Osman, A. (1990). Dimensional overlap: cognitive basis for stimulus-response compatibility. A model and taxonomy. Psychological Review, 97, 253–270.

    Article  PubMed  Google Scholar 

  • Kornhuber, H. H. & Deecke, L. (1965). Hirnpotentialänderungen bei Wilkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Archives für die gesamte Physiologie, 248, 1–17.

  • Leuthold, H., Sommer, W., & Ulrich, R. (1996). Partial advance information and response preparation: inferences from the lateralized readiness potential. Journal of Experimental Psychology: General, 125, 307–323.

    Article  PubMed  Google Scholar 

  • Logan, G. D. & Cowan, W. B. (1984). On the ability to inhibit thought and action: a theory of an act of control. Psychological Review, 91, 295–327.

    Article  Google Scholar 

  • Miller, J. (1998). Effects of stimulus-response probability on choice reaction time: evidence from the lateralized readiness potential. Journal of Experimental Psychology: Human Perception and Performance, 24, 1521–1534.

    Google Scholar 

  • Miller, J. & Hackley, S. A. (1992). Electrophysiological evidence for temporal overlap among contingent mental processes. Journal of Experimental Psychology: General, 121, 195–209.

    Article  PubMed  Google Scholar 

  • Miller, J., Schäffer, R., & Hackley, S. A. (1991). Effects of preliminary information in a go versus no-go task. Acta Psychologica, 76, 241–292.

    Article  PubMed  Google Scholar 

  • Niemi, P. & Näätänen, R. (1981). Foreperiod and simple reaction time. Psychological Bulletin, 89, 133–162.

    Article  Google Scholar 

  • Nieuwenhuis, S., Yeung, N., Van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/nogo task: effects of response conflict and trial-type frequency. Cognitive, Affective, & Behavioral Neuroscience (in press).

  • Norman, D. & Shallice, T. (1986). Attention to action: willed and automatic control of behaviour. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.) Consciousness and self-regulation, Vol. 4. New York: Plenum Press.

  • Osman, A. M., Bashore, T. R., Coles, M. G. H., Donchin, E., & Meyer, D. E. (1992). On the transmission of partial information: inferences from movement-related brain potentials. Journal of Experimental Psychology: Human Perception and Performance, 18, 217–232.

    PubMed  Google Scholar 

  • Osman, A., Lou, L., Muller-Gethmann, H., Rinkenauer, G., Mattes, S., & Ulrich, R. (2000). Mechanisms of speed-accuracy tradeoff: evidence from covert motor processes. Biological Psychology, 51, 173–199.

    Article  PubMed  Google Scholar 

  • Pachella, R. G. (1974). The interpretation of reaction time in information processing research. In B. Kantowitz (Ed.) Human information processing: tutorials in performance and cognition, (pp. 41–82). Potomac MD, Lawerence Erlbaum.

  • Pfefferbaum, A., Ford, J. M., Weller, B. J., & Kopell, B. S. (1985). ERPs to response production and inhibition. Electroencephalography and clinical neurophysiology, 60, 423–444.

  • Ridderinkhof, K. R. (2002a). Activation and suppression in conflict tasks: empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Common Mechanisms in Perception and Action. Attention & Performance, Vol. XIX. (pp. 494–519). Oxford: Oxford University Press.

  • Ridderinkhof, K. R. (2002b). Micro- and macro-adjustments of task set: activation and suppression in conflict tasks. Psychological Research, 66, 312–323.

    Article  PubMed  Google Scholar 

  • Ridderinkhof, K. R., & Van der Molen, M. W. (1995). When global information and local information collide: a brain-potential analysis of the locus of interference effects. Biological Psychology, 41, 29–53.

    Article  PubMed  Google Scholar 

  • Ridderinkhof, K. R., Van der Molen, M. W., & Bashore, T. R. (1995). Limits on the application of additive factors logic: violations of stage robustness suggest a dual-process architecture to explain flanker effects on target processing. Acta Psychologica, 90, 29–48.

    Article  Google Scholar 

  • Ridderinkhof, K. R., Band, G. P. H., & Logan, G. D. (1999). A study of adaptive behavior: effects of age and irrelevant information on the ability to inhibit one's actions. Acta Psychologica, 101, 315–337.

    Article  Google Scholar 

  • Rohrbaugh, J. W. & Gaillard, A. W. K. (1983). Sensory and motor aspects of the contingent negative variation. In A. W. K. Gaillard & W. Ritter (Eds.) Tutorials in event-related potentials research: endogenous components (pp. 269–310). Amsterdam: North-Holland.

  • Rosenbaum, D. A. (1980). Human movement initiation: specification of arm, direction and extent. Journal of Experimental Psychology: General, 109, 444–474.

    Article  PubMed  Google Scholar 

  • Sangals, J., Sommer, W., & Leuthold, H. (2002). Influences of presentation mode and time pressure on the utilisation of advance information in response preparation. Acta Psychologica, 109, 1–24.

    Article  PubMed  Google Scholar 

  • Sasaki, K., Gemba, H., & Tsujimoto, T. (1989). Suppression of visually initiated hand movement by stimulation of the prefrontal cortex in the monkey. Brain Research, 495, 100–107.

    Article  PubMed  Google Scholar 

  • Shimamura, A. P. (1995). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences (pp. 803–813). Cambridge, MA: MIT Press.

  • Tecce, J.J. (1972). Contingent negative variation (CNV) and psychological processes in man. Psychological Bulletin, 77, 73–108.

    Article  PubMed  Google Scholar 

  • Ulrich, R., Leuthold, H., & Sommer, W. (1998). Motor programming of response force and movement direction. Psychophysiology, 35, 721–728.

    Article  PubMed  Google Scholar 

  • Van Boxtel, G. J. M. (1994). Non-motor components of slow brain potentials. Tilburg, The Netherlands. Unpublished Ph.D. Thesis.

  • Van Boxtel, G. J. M. & Brunia, C. H. M. (1994). Motor and non-motor aspects of slow brain potentials. Biological Psychology, 38, 37–51.

    Article  PubMed  Google Scholar 

  • Van Boxtel G.J.M., Van der Molen, M.W., Jennings, J.R., & Brunia, C.H.M. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58, 229–262.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., JaZZZ;kowski, P., Wauschkuhn, B., & Verleger, R. (2001). Influence of time pressure in a simple response task, a choice-by-location task, and the Simon task. Journal of Psychophysiology, 15, 241–255.

    Article  Google Scholar 

  • Verleger, R., Wauschkuhn, B., Van der Lubbe, R., JaZZZ;kowski, P., & Trillenberg, P. (2000). Posterior and anterior contribution of hand-movement preparation to late-CNV. Journal of Psychophysiology, 14, 69–86.

    Article  Google Scholar 

  • Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67–85.

    Article  Google Scholar 

Download references

Acknowledgements.

The authors wish to thank Michel Lauer, Geertje Hagedoorn, and Ralf Vis for their assistance in testing, and Boris Burle, Sander Los, and Hartmut Leuthold for valuable reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido P. H. Band.

Additional information

This study was supported by the Netherlands Organization of Scientific Research (NWO) grant numbers 575-63-082 and 575-25-004. The work of Dr. Band and Dr. Ridderinkhof was supported by grants from the Royal Netherlands Academy of Arts and Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Band, G.P.H., Ridderinkhof, K.R. & van der Molen, M.W. Speed-accuracy modulation in case of conflict: the roles of activation and inhibition. Psychological Research 67, 266–279 (2003). https://doi.org/10.1007/s00426-002-0127-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-002-0127-0

Keywords

Navigation