Skip to main content

Advertisement

Log in

Biology and biotechnological aspect of sweet potato (Ipomoea batatas L.): a commercially important tuber crop

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review highlights the economic importance of sweet potato and discusses new varieties, agronomic and cultivation practices, pest and disease control efforts, plant tissue culture protocols, and unexplored research areas involving this plant.

Abstract Sweet potato is widely consumed in many countries around the world, including India, South Africa and China. Due to its valuable nutritional composition and highly beneficial bioactive compounds, sweet potato is considered a major tuber crop in India. Based on the volume of production, this plant ranks seventh in the world among all food crops. Sweet potato is considered a “Superfood” by the ‘Centre for Science in the Public Interest’ (CSPI), USA. This plant is mostly propagated through vegetative propagation using vine cuttings or tubers. However, this process is costly, labour-intensive, and comparatively slow. Conventional propagation methods are not able to supply sufficient disease-free planting materials to farmers to sustain steady tuber production. Therefore, there is an urgent need to use various biotechnological approaches, such as cell, tissue, and organ culture, for the large-scale production of healthy and disease-free planting material for commercial purposes throughout the year. In the last five decades, a number of tissue culture protocols have been developed for the production of in vitro plants through meristem culture, direct adventitious organogenesis, callus culture and somatic embryogenesis. Moreover, little research has been done on synthetic seed technology for the in vitro conservation and propagation of sweet potato. The current review comprehensively describes the biology, i.e., plant phenotypic description, vegetative growth, agronomy and cultivation, pests and diseases, varieties, and conventional methods of propagation, as well as biotechnological implementation, of this tuber crop. Furthermore, the explored and unexplored areas of research in sweet potato using biotechnological approaches have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  • Abel C, Busia K (2005) An exploratory ethno-botanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern Med Rev 10:112–122

    PubMed  Google Scholar 

  • Abidin PE, Akansake DA, Asare KB, Acheremu K, Carey EE (2017) Effect of sources of sweet potato planting material for quality vine and root yield. Open Agric 2:244–249

    Google Scholar 

  • Abidin PE, Drey E, Kweku Amagloh F, Asare K, Crey EE (2015) Training of trainers module for orange fleshed sweet potato (OFSP) utilization and processing. International Potato Centre.1–34

  • Aboulila AA, Galal OA, EI-Samahy MFM, (2018) Enhancement of somaclonal variations and genetic diversity using graphite nanoparticles (GtNPs) in sweet potato plants. Afr J Biotechnol 17(27):847–855

    CAS  Google Scholar 

  • Abubakar AS, Yahaya SU, Shaibu AS, Ibrahim H, Ibrahim AK, Lawan ZM, Isa AM (2018) In vitro propagation of sweet potato (Ipomoea batatas L.) cultivars. Agric Sci Digest 38:17–21

    Google Scholar 

  • Addae-Frimpomaah F (2014) Regeneration of three sweet potato (Ipomoea batatas L.) accessions in Ghana via, meristem and nodal culture. Int J Plant Breed Genet 8(3):121–138

    CAS  Google Scholar 

  • Akomeah B, Quain MD, Ramesh SA, Anand L, Rodrı´guez Lopez CM, (2019) Common garden experiment reveals altered nutritional values and DNA methylation profiles in micropropagated three elite Ghanaian sweet potato genotypes. PLoS ONE 14(4):e0208214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alconero R, Santiago AG, Morales F, Rodriguez F (1975) Meristem tip culture and virus indexing of sweet potatoes. Phytopathology 65:769–772

    Google Scholar 

  • Alizadeh M, Krishna H, Eftekhari M, Modareskia M, Modareskia M (2015) Assessment of clonal fidelity in micropropagated horticultural plants. J Chem Pharm Res 7(12):977–990

    CAS  Google Scholar 

  • Alula K, Zeleke H, Manikandan M (2018) In vitro propagation of sweet potato (Ipomoea batatas L.) through apical meristem culture. J Pharm Phytochem 7(1):2386–2392

    CAS  Google Scholar 

  • Arif N, Bahari, (2019) Shoot multiplication media formulation of purple sweet potato (Ipomoea batatas L.) using photoautotrophic techniques. J Pharm Biol Sci 14(5):7–12

    Google Scholar 

  • Ayeleso TB, Ramachela K, Mukwevho E (2016) A review of therapeutic potentials of sweet potato: pharmacological activities and influence of the cultivar. Trop J Pharma Res 15(12):2751–2761

    CAS  Google Scholar 

  • Beetham P, Mason A (1992) Production of pathogen-tested sweet potato. Australian Centre for International Agricultural Research, Canberra

    Google Scholar 

  • Behera S, Kamila PK, Rout KK, Barik DP, Panda PC, Naik SK (2018) An efficient plant regeneration protocol of an industrially important plant, Hedychium coronarium J. Koenig and establishment of genetic and biochemical fidelity of the regenerants. Ind Crop Prod 126:58–68

    CAS  Google Scholar 

  • Behera S, Kar SK, Rout KK, Barik DP, Panda PC, Naik SK (2019) Assessment of genetic and biochemical fidelity of field-established Hedychium coronarium J. Koenig regenerated from axenic cotyledonary node on meta-topolin supplemented medium. Ind Crop Prod 134:206–215

    CAS  Google Scholar 

  • Behera S, Nayak N, Shasmita BDP, Naik SK (2015) A novel and efficient micropropagation protocol of Bacopa monnieri (L.) Pennell through two-stage culture of nodal segments and ex vitro acclimatization. J Appl Biol Biotechnol 3(3):16–21

    Google Scholar 

  • Behera S, Rout KK, Panda PC, Naik SK (2020) Production of non-embryogenic synthetic seeds for propagation and germplasm transfer of Hedychium coronarium J Koenig. J Appl Res Med Arom Plant 19:100271

    Google Scholar 

  • Behera S, Monalisa K, Meher RK, Mohapatra S, Das PK, Madkami SK, Naik PK, Naik SK (2022) Phytochemical fidelity and therapeutic activity of micropropagated plant Curcuma amada Roxb: an important medicinal herb. Ind Crop Prod 176:11440

    Google Scholar 

  • Beyene B, Menamo T, Haile G (2020) Protocol optimization for in vitro propagation of Kulfo orange flesh sweet potato (Ipomoea batatas) variety using shoot tip culture. Afr J Biotechnol 14(10):395–401

    CAS  Google Scholar 

  • Beyene B, Haile G, Menamo T (2019) Protocol optimization for in vitro propagation of sweet potato (Ipomoea batatas L.) variety using bud explant. Int J Innovat Pharma Sci Res 7(2):1–13

    CAS  Google Scholar 

  • Butiuc-Keul A, Farkas A, Cristea V (2016) Genetic stability assessment of in vitro plants by molecular markers. Studia UBB Biologia 61(1):107–114

    Google Scholar 

  • Butt SJ, Varis S, Nasir IA, Sheraz S, Shahid A, Ali Q (2015) Micropropagation in advanced vegetable production: a review. Adv Life Sci 2(2):48–57

    CAS  Google Scholar 

  • Cavalcante AJM, Sihachakr D, Allot M, Tizroutine S, Mussio I, Servaes A, Ducreux G (1994) Isozyme modifications and plant regeneration through somatic embryogenesis in sweet potato (Ipomoea batatas (L.) Lam). Plant Cell Rep 13(8):437–441

    Google Scholar 

  • Chauhan VBS, Behera S, Pati K, Bansode VV, Nedunchezhiyan M (2021) Breeding for drought tolerance in sweet potato (Ipomoea batatas L.). In: More SJ, Giri NA, Suresh KJ, Visalakshi CC, Tadigiri S (eds) Recent Advances in Root and Tuber Crops. Brillion Publishing House, New Delhi, pp 65–87

    Google Scholar 

  • Chee RP, Cantliffe DJ (1989) Embryo development from discrete cell aggregates in Ipomoea halalas (L.) Lam. cultured in vitro in response to structural polarity. In Vitro Cell Dev Bio 25:757–760

    Google Scholar 

  • Chee RP, Schultheis JR, Cantliffe DJ (1992) Micropropagation of sweet potato (Ipomoea batatas L.). In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry Springer. Springer, Berlin

    Google Scholar 

  • Cho J, Kang JG, Long PH, Jing J, Back Y, Chung KS (2003) Antioxidant and memory enhancing effects of purple sweet potato anthocyanins and cordyceps mushroom extract. Arch Pharm Res 26:821–825

    CAS  PubMed  Google Scholar 

  • CTCRI (2004) Annual report 2003–2004. Central Tuber Crops Research Institute, Thiruvananthapuram

    Google Scholar 

  • CTCRI (2014) Annual report 2013–2014. Central Tuber Crops Research Institute, Thiruvananthapuram

    Google Scholar 

  • Delgado-Paredes GE, Rojas-Indrogo C, Chaname-Cespedes J, Floh E, Handro W (2017) Development and agronomic evaluation of in vitro somaclonal variation in sweet potato regenerated plants from direct organogenesis of roots. Asian J Plant Sci Res 7(1):39–48

    CAS  Google Scholar 

  • Dessai AP, Gosukonda RM, Blay E, Dumenyo CK, Medina-Bolivar F, Prakash CS (1995) Plant regeneration of sweet potato (Ipomoea batatas L.) from leaf explants in vitro using a two-stage protocol. Sci Hortic 62:217–224

    Google Scholar 

  • Dewir YH, Aldubai AA, Kher MM, Alsadon AA, EI-Hendawy S, AI-Suhaibani NA, (2020) Optimization of media formulation for axillary shoot multiplication of the red-peeled sweet potato (Ipomoea batatas [L.] Lam.) ‘Abees.’ Chilean J Agric Res 80(1):1–8

    Google Scholar 

  • Dodds JH, Merzdorf C, Zambrano V, Sigtleilas C, Jaynes J (1991) Potential use of Agrobacterium-mediated transfer to confer insect resistance in sweet potato. In: Jansson R, Raman KV (eds) sweet Potato Pest Management, A Global Perspective. Westview Press, Boulder, pp 203–220

    Google Scholar 

  • Dolinski R, Olek A (2013) Micropropagation of sweet potato (Ipomoea batatas (L.) Lam.) from node explants. Acta Sci Pol Hortorum Cultus 12(4):117–127

    Google Scholar 

  • Doussoh AM, Dangou JS, Agbidinoukoun A, Houedjissin SS, Ahanhanzo C (2018a) The use of encapsulated dehydration technique for short term preservation of endangered sweet potato landraces (Ipomoea batatas Lam) from Benin. J Plant Sci 6(3):93–100

    Google Scholar 

  • Doussoh AM, Dangou JS, Cacai GHT, Houedjissin SS, Ahanhanzo C (2018b) Effect of cytokinins and auxin on bud burst and direct organogenesis in vitro of some sweet potato landraces (Ipomoea batatas L.) grown in Benin. J Appl Biosci 131:13347–13358

    Google Scholar 

  • Dugassa G, Feyissa T (2011) In vitro production of virus free sweet potato (Ipomoea batatas L. Lam) by meristem culture and thermotherapy. Ethio J Sci 34(1):17–28

    Google Scholar 

  • Elliott RF (1969) Growth of excised meristem-tips of kumura, Ipomoea batatas (Linn.) poir in axenic culture. N Z J Bot 7:158–166

    Google Scholar 

  • Emmanuel N (2010) Ethno medicines used for the treatment of prostatic disease in Foumban Cameroon. Afr J Pharm Pharmacol 4:793–805

    Google Scholar 

  • Fan G, Han Y, Gu Z, Chen D (2008) Optimizing conditions for anthocyanins extracted from purple sweet potato using response surface methodology (RSM). LWT Food Sci Technol 41:155–160

    CAS  Google Scholar 

  • Frison EA, Ng SYC (1981) Tissue culture and distribution of diseases-free sweet potato material. In: International Institute of Tropical Agriculture (ITTA) Annual Report 1981. 74–75

  • Ghasemzadeh A, Talei D, Jaafar HZ, Juraimi AS, Mohamed MT, Puteh A, Halim MR (2016) Plant growth regulators alter phytochemical constituents and pharmaceutical quality in sweet potato (Ipomoea batatas L.). BMC Complem Alternat Med 16:152

    Google Scholar 

  • Gong Y, Gao F, Tang K (2005) In vitro high frequency direct root and shoot regeneration in sweet potato using the ethylene inhibitor silver nitrate. South Afr J Bot 71(1):110–113

    Google Scholar 

  • Gonzalez RG, Sachez DS, Guerra ZZ (1992) Efficient in vitro regeneration protocol of recalcitrant sweet potato (Ipomoea batatas L.) cultivars. Asia Pac J Mol Biol Biotechnol 1(2):25–53

    Google Scholar 

  • Gosukonda RM, Prakash CS, Dessai AP (1995) Shoot regeneration in vitro from diverse genotypes of sweet potato and multiple shoot production per explant. Hort Sci 30(5):1074–1077

    Google Scholar 

  • Gupta PK, Varshney RK (1999) Molecular markers for genetic fidelity during micropropagation and germplasm conservation. Curr Sci 76:1308–1310

    Google Scholar 

  • Hermes D, Dudek DN, Maria M, Horta LP, Lima EN, Fatima A (2013) In vivo wound healing and antiulcer properties of white sweet potato (Ipomoea batatas). J Adv Res 4:411–415

    CAS  PubMed  Google Scholar 

  • Islam S (2006) Sweet potato (Ipomoea batatas L.) leaf: Its potential effect on human health and nutrition. J Food Sci 71:13–21

    Google Scholar 

  • Islam S, Yoshimoto Y, Yamakawa O (2003) Distribution and physiological function of caffeoylquinic acid derivatives in sweet potato genotypes. J Food Sci 68:111–116

    CAS  Google Scholar 

  • Jena N, Kar MK (2019) Ethanol production from various plant sources using Saccharomyces cerevisiae. Int J Chem Stud 7(6):2968–2971

    Google Scholar 

  • Kadota M, Niimi Y (2004) Influence of carbon sources and their concentrations on shoot proliferation and rooting of ‘Hosui’ Japanese pear. HortSci 39(7):1681–1683

    Google Scholar 

  • Kang L, Park S, Ji CY, Kim HS, Lee H, Kwak S (2017) Metabolic engineering of carotenoids in transgenic sweet potato. Breeding Sci 67:27–34

    CAS  Google Scholar 

  • Karan YB, Ozdemir S (2021) The effect of different media on in vitro micropropagation in sweet potatoes. Turkish J Agric Food Sci Technol 9(9):1647–1652

    Google Scholar 

  • Kaur K, Dolker D, Behera S, Pati PK (2022) Critical factors influencing in vitro propagation and modulation of important secondary metabolites in Withania somnifera Dunal. Plant Cell Tiss Org Cult. https://doi.org/10.1007/s11240-021-02225-w

    Article  Google Scholar 

  • Khachatryan A, Bansode RR, Labonte DR, Losso JN (2003) Age-related macular degeneration (AMD) is a pathological condition with real cure. Institute of Food Technology (IIFT) Annual Meeting, Chigago

    Google Scholar 

  • Khan Z, Doty SL (2009) Characterization of bacterial endophytes of sweet potato plants. Plant Soil. https://doi.org/10.1007/s11104-009-9908-1

    Article  Google Scholar 

  • Kim JH, Kim K, Yum B (2015) Establishment of a one step plant regeneration system in sweet potato (Ipomoea batatas L. Lam). Global J Biol Agric Health Sci 4(2):48–55

    Google Scholar 

  • Kuo CG, Shen BJ, Shen MJ, Green SK, Lee DD (1985) Virus-free sweet potato storage roots derived from meristem-tips and leaf-cuttings. Sci Hort 26:231–240

    Google Scholar 

  • Liao CH, Chung ML (1979) Shoot tip culture and virus indexing in sweet potato. J Agric Res China 28:139–144

    Google Scholar 

  • Liu Q (2017) Improvement for agronomically important traits by gene engineering in sweet potato. Breeding Sci 67:15–26

    CAS  Google Scholar 

  • Liz RE, Conover RA (1978) In vitro propagation of sweet potato. HortScience 13:659–660

    Google Scholar 

  • Ludvik B, Neuffer B, Pacini G (2004) Efficacy of Ipomoea batatas (Caiapo) on diabetes control in type 2 diabetic subjects treated with diet. Diabetes Care 27:436–440

    PubMed  Google Scholar 

  • Magoon ML, Krishnan R, VijayaBai K (1970) Cytological evidence on the origin of sweet potato. Ther Appl Genet 40:360–366

    CAS  Google Scholar 

  • Manrique-Trujillo S, Diaz D, Reano R, Ghslain M, Kreuze J (2013) Sweet potato plant regeneration via an improved somatic embryogenesis protocol. Sci Hort 161:95–100

    CAS  Google Scholar 

  • Marco S, Walkey DGA (1992) Rapid production of sweet potato (Ipomoea batatas) by meristem tip culture in eliminate virus eradication. Phytopath Medit 31:185–187

    Google Scholar 

  • Masekesa RT, Gasura E, Kujeke GT, Ngadze E, Chidzwondo F (2021) Induction of somatic embryogenesis and organogenesis in Zimbabwean sweet potato (cv Brondal). Adv Agric. https://doi.org/10.1155/2021/9976800

    Article  Google Scholar 

  • Matimati I, Hungwe E, Murungu FS (2005) Vegetative growth and tuber yields of micropropagated and farm-retained sweet potato (Ipomea batatas) cultivars. J Agronomy 4(3):156–160

    Google Scholar 

  • Meira M, Pereira da Silva E, David JM, David JP (2012) Review of the genus Ipomoea: traditional uses, chemistry and biological activities. Rev Bras Farmacogn 22:682–713

    CAS  Google Scholar 

  • Mengs B, Chimdessa M, Abraha E (2018) In vitro propagation of sweet potato through lateral bud culture. Int J Innov Pharma Sci Res 6(7):1–12

    Google Scholar 

  • Mesekesa RT, Gasura E, Matikiti A, Kujeke GT, Ngadze E, Icishahayo D, Chidzwondo F, Robertson AI (2016) Effect of BAP, NAA and GA3, either alone or in combination, on meristem culture and plantlet establishment in sweet potato (cv. Brondal). Afr J Food Agric Nutr Develop 16(1):10649–10665

    Google Scholar 

  • MilindMonika P (2015) Sweet potato as a super food. Int J Res Ayurveda Pharm 6(4):557–562

    Google Scholar 

  • Mohandas C (2006) Nematode problems in tuber crops. 14th Triennial Symposium of International Society of Tropical Root Crops, 20–26 November 2006. Central Tuber Crops Research Institute, India, pp 150–151

    Google Scholar 

  • Mohanraj R, Sivasankar S (2014) Sweet potato (Ipomoea batatas (L.) Lam)—a valuable medicinal food: a review. J Med Food 17(7):733–741

    PubMed  Google Scholar 

  • Mukherjee A (2002) Effect of Nacl on in vitro propagation of sweet potato (Ipomoea batatas L.). Appl Biochem Biotechnol 102–103:431–441

    PubMed  Google Scholar 

  • Mukherjee A, Naskar SK, Edison S, Dasgupta M (2006) Response of orange flesh sweet potato genotypes to salinity stress. 14th Triennial Symposium of International Society of Tropical Root Crops, 20–26 November 2006. Central Tuber Crops Research Institute, Thiruvananthapuram, pp 151–152

    Google Scholar 

  • Mukhopadhyay SK, Sen H, Hana PK (1990) Effect of planting materials on growth and yield of sweet potato. J Root Crop 16(2):119–122

    Google Scholar 

  • Mukhopadhyay M, Mondal TK, Chand PK (2016) Biotechnological advances in tea [Camellia sinensis (L.) O. Kuntze]: a review. Plant Cell Rep 35(2):255–287

    CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Naik SK, Chand PK (2011) Tissue culture-mediated biotechnological intervention in pomegranate: a review. Plant Cell Rep 30:707–721

    CAS  PubMed  Google Scholar 

  • Nair GM (2006) Agro-techniques and planting materials production in sweet potato. In: Byju G (ed) Quality planting materials production in tropical tuber crops. Central Tuber Crops Research Institute, Thiruvananathapuram, pp 55–58

    Google Scholar 

  • Ndagijimana V, Kahia J, Asiimwe T, Sallah PY, Waweru B, Mushimiyimana I, Ndirigwe J, Kirimi S, Shumbusha D, Njenga P, Kouassi M, Koffi E (2014) In vitro effects of gibberellic acid and sucrose concentration on micropropagation of two elite sweet potato cultivars in Rwanda. Int J Biotechnol Mol Biol Res 5(1):1–6

    Google Scholar 

  • Nedunchezhiyan M, Ray RC (2010) Sweet potato growth, development production and utilization: overview. In: Ray RC, Tomlins KI (eds) Sweet potato: Post Harvest Aspects in Food. Nova Science Publishers Inc, New York, pp 1–26

    Google Scholar 

  • Nedunchezhiyan M, Byju G, Jata SK (2012) Sweet potato agronomy. Fruit Veg Cereal Sci Biotechnol 6(1):1–10

    Google Scholar 

  • Oggero KO, Gitonga NM, Mwangi M, Ombori O, Ngugi M (2011) A low cost medium for sweet potato micropropagation. Afr Crop Sci Confer Proc 10:57–63

    Google Scholar 

  • Oggema JN, Ouma JP, Kinyua MG (2007) Responses of five locally adapted sweet potato cultivars to in vitro plant regeneration via direct and indirect embryogenesis. Asian J Plant Sci 6(4):617–622

    CAS  Google Scholar 

  • Oggero KO, Mburugu GN, Mwangi M, Ngugi MM, Ombori O (2012) Low cost tissue culture technology in the regeneration of sweet potato (Ipomoea batatas L. lam) Res. J Biol 2(2):71–78

    Google Scholar 

  • Owori C, Berga L, Mwanga ROM, Namutebi A, Kapinga R (2007) Sweet potato recipe book: sweet potato processed products from Eastern and Central Africa. Kampala, Uganda, pp 1–102

    Google Scholar 

  • Ozturk G, Azeri FN, Yildirim Z (2012) Field performance of in vitro sweet potato (Ipomoea batatas L.) plantlets derived from seed stocks. Turkish J Field Crop 17(1):1–4

    Google Scholar 

  • Pati K, Chauhan VBS, Bansode VV, Nedunchezhiyan M (2021) Biofortification in sweet potato for health and nutrition security. In: More SJ, Giri NA, Suresh KJ, Visalakshi CC, Tadigiri S (eds) Recent Advances in Root and Tuber Crops. Brillion Publishing House, New Delhi, pp 21–30

    Google Scholar 

  • Pochapski MT, Fosquiera EC, Esmerino LA, Dos-Santos EB, Farago PV, Santos FA, Groppo FC (2011a) Phytochemical screening, antioxidant, and antimicrobial activities of crude leave extract from Ipomoea batatas (L.) Lam. Phcog Mag 7:165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pochapski MT, Fosquiera EC, Esmerino LA, Santos EB, Farago PV, Santos FA (2011b) Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves’ extract from Ipomoea batatas (L.) Lam. Pharmacogn Mag 7:165–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MM, Sultana RS (2017) Sweet potato: suspension culture for cell aggregation. J Plant Sci Res 4(2):1–11

    Google Scholar 

  • Rajamma P, Premkumar T (1994) Pests of sweet potato. In: Chadha KL, Nayar GG (eds) Advances in Horticulture: Tuber Crops. Malhotra Publishing House, New Delhi, pp 457–484

    Google Scholar 

  • Ray RC, Ravi V (2005) Post harvest spoilage of sweet potato and its control measures. Crit Rev Food Sci Nutr 35:623–644

    Google Scholar 

  • Rey HY, Mroginski LA (1985) Effect of gibberellic acid in regeneration of sweet potato (Ipomoea batatas) plants by in vitro apical meristem culture. Hort CD (1978–1978).

  • Saxena HO (1986) Observations on the ethnobotany of Madhya Pradesh. Bull Bot Surv India 28(1–4):149–156

    Google Scholar 

  • Schultheis JR, Cantliffe DJ (1992) Growth of somatic embryos of sweet potato (Ipomoea batatas L. Lam) in hydroxyethyl cellulose gel amended with salts and carbohydrates. Sci Hortic 50(1–2):21–33

    CAS  Google Scholar 

  • Sefasi A, Kreuze J, Ghislain M, Manrique S, Kiggundu A, Ssemakula G, Mukasa SB (2012) Induction of somatic embryogenesis in recalcitrant sweet potato (Ipomoea batatas L.) cultivars. Afr J Biotechnol 11(94):16055–16064

    CAS  Google Scholar 

  • Shaji A, Hegde V, Sailekshmi N, Koundinya AVV (2019) An efficient micropropagation protocol for nutritionally rich varieties of sweet potato (Ipomoea batatas L.). J Root Crop 45(2):12–18

    Google Scholar 

  • Somers KMT, Collins WW (1985) In vitro growth and regeneration characteristics of diverse populations of sweet potato (Ipomoea batatas L. Lam). VIIth Symposium of the International Society for Tropical Root Crops.781–794

  • Sonnino A, Mini P (1993) Somatic embryogenesis in sweet potato Ipomoea batatas (L.) Lam. Acta Hortic 336:239–244

    Google Scholar 

  • Sunitha S, George J, Sheela MN, Kumar JS, Mukherjee A (2018) Tuber crops varieties released/ recommended for release by AICRP on tuber crops over five decades. ICAR- All India Coordinated Research Project On Tuber Crops, Thiruvananthapuram

    Google Scholar 

  • Tadda SA, Kui X, Yang H, Li M, Huang Z, Chen X, Qiu D (2022) The response of vegetable sweet potato (Ipomoea batatas Lam) nodes to different concentrations of encapsulation agent and MS salts. Agronomy 12(19):1–13

    Google Scholar 

  • Tanaka M, Ishiguro K, Oki T, Okuno S (2017) Functional components in sweet potato and their genetic improvement. Breeding Sci 67:52–61

    CAS  Google Scholar 

  • Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho C (2007) Antioxidant activities, phenolics and beta-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem 103(3):829–838

    CAS  Google Scholar 

  • Ubalua AO, Okoroafor UE (2013) Micropropagation and postflask management of sweet potato using locally available materials as substrates for hardening. Plant Knowl J 2(2):56–61

    Google Scholar 

  • Vettorazzi RG, Carvalho VS, Sudre CP, Rodrigues R (2017) Developing an in vitro optimized protocol to sweet potato landraces conservation. Acta Sci Agro 39(3):359–367

    Google Scholar 

  • Woolfe JA (1992) Sweet potato: an untapped food resource. Cambridge University Press, Cambridge, p 643

    Google Scholar 

  • Yang X (2010) Rapid production of virus free plantlets by shoot tip culture in vitro of purple coloured sweet potato (Ipomoea batatas L. Lam). Pak J Bot 42(3):2069–2075

    Google Scholar 

  • Yasuda K (1998) Integrated control of sweet potato weevils Euscepes postifasciatus and Cylas formicarius (Coleoptera: Curculionidae). Proceeding of International Workshop on Sweet potato Production System toward the 21st Century, December 9–10, 1997. Miyakonojo, Miyazaki, pp 317–322

    Google Scholar 

  • Zamora S, Gruezo K (1993) Meristem culture of sweet potato (Ipomoea batatas). Plant Genet Resour Newsletter 91(92):25–28

    Google Scholar 

Download references

Acknowledgements

VBS Chauhan acknowledges the Department of Agriculture, Cooperation and Farmers Welfare, Government of India through Rashtriya Krishi VikasYojana, Government of Odisha for financial support and facilities provided by the Director, ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India. S Behera wishes to acknowledge OHEPEE, Govt. of Odisha, through the World Bank under Centre of Excellence in Natural Products and Therapeutics, Sambalpur University for financial support.

Author information

Authors and Affiliations

Authors

Contributions

SB designed the study. SB and KM wrote the first draft of the manuscript. VBSC supervised SB and corrected the manuscript. SKN critically reviewed and edited the manuscript. KP, VVB, MN, PKN, and AKV edited the manuscript. All authors read, edited, and approved the final manuscript for publication.

Corresponding author

Correspondence to Vijay Bahadur Singh Chauhan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this manuscript.

Additional information

Communicated by Gerhard Leubner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behera, S., Chauhan, V.B.S., Pati, K. et al. Biology and biotechnological aspect of sweet potato (Ipomoea batatas L.): a commercially important tuber crop. Planta 256, 40 (2022). https://doi.org/10.1007/s00425-022-03938-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-022-03938-8

Keywords

Navigation