Skip to main content
Log in

Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Three subtelomeric satellites and one interstitial 5S rDNA were characterized in Cucumis hystrix, and the pericentromeric signals of two C. hystrix subtelomeric satellites along C. sativus chromosomes supported the hypothesis of chromosome fusion in Cucumis.

Tandem repeats are chromosome structural fractions consisting of highly repetitive sequences organized in large tandem arrays in most eukaryotes. Differentiation of tandem repeats directly affects the chromosome structure, which contributes to species formation and evolution. Cucumis hystrix (2n = 2x = 24) is the only wild Cucumis species grouped into the same subgenus with C. sativus (2n = 2x = 14), hence its phylogenetic position confers a vital role for C. hystrix to understand the chromosome evolution in Cucumis. However, our knowledge of C. hystrix tandem repeats is insufficient for a detailed understanding of the chromosome evolution in Cucumis. Based on de novo tandem repeat characterization using bioinformatics and in situ hybridization (ISH), we identified and characterized four differentially amplified tandem repeats, Cucumis hystrix satellite 1–3 (CuhySat1–CuhySat3) located at the subtelomeric regions of all chromosomes, and Cucumis hystrix 5S (Cuhy5S) located at the interstitial regions of one single chromosome pair. Comparative ISH mapping using CuhySat1–3 and Cuhy5S revealed high homology of tandem repeats between C. hystrix and C. sativus. Intriguingly, we found signal distribution variations of CuhySat2 and CuhySat3 on C. sativus chromosomes. In comparison to their subtelomeric signal distribution on C. hystrix chromosomes, CuhySat3 showed a pericentromeric signal distribution and CuhySat2 showed both subtelomeric and pericentromeric signal distributions on C. sativus chromosomes. This detailed characterization of four C. hystrix tandem repeats significantly widens our knowledge of the C. hystrix chromosome structure, and the observed signal distribution variations will be helpful for understanding the chromosome evolution of Cucumis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ISH:

In situ hybridization

FISH:

Fluorescence in situ hybridization

GISH:

Genome in situ hybridization

CuhySat:

Cucumis hystrix satellite

Cuhy5S:

Cucumis hystrix 5S

rDNA:

Ribosomal DNA

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beridze T (1986) Satellite DNA. Springer, Berlin

    Book  Google Scholar 

  • Cai Z, Liu H, He Q, Pu M, Chen J, Lai J, Li X, Jin W (2014) Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genom 15:1025

    Article  Google Scholar 

  • Chen JF, Staub JE, Tashiro Y, Isshiki S, Miyazaki S (1997) Successful interspecific hybridization between Cucumis sativus L. and C. hystrix Chakr. Euphytica 96:413–419

    Article  Google Scholar 

  • Chen JF, Staub JE, Adelberg JW, Jiang JM (1999) Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can J Bot 77:389–393

    CAS  Google Scholar 

  • Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2016) GenBank. Nucleic Acids Res 44:D67–72

    Article  CAS  PubMed  Google Scholar 

  • Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S (2000) Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 10:679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvořáčková M, Fojtová M, Fajkus J (2015) Chromatin dynamics of plant telomeres and ribosomal genes. Plant J 83:18–37

    Article  PubMed  Google Scholar 

  • Fajkus P, Peška V, Sitová Z, Fulnečková J, Dvořáčková M, Gogela R, Sýkorová E, Hapala J, Fajkus J (2016) Allium telomeres unmasked: the unusual telomeric sequence (CTCGGTTATGGG)n is synthesized by telomerase. Plant J 85:337–347

    Article  CAS  PubMed  Google Scholar 

  • Ganal M, Hemleben V (1998) Insertion and amplification of a DNA sequence in satellite DNA of Cucumis sativus L. (cucumber). Theor Appl Genet 75:357–361

    Article  Google Scholar 

  • Garrido-Ramos MA (2015) Satellite DNA in Plants: more than Just Rubbish. Cytogenet Genome Res 146:153–170

    Article  CAS  PubMed  Google Scholar 

  • Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghebretinsae AG, Thulin M, Barber JC (2007) Relationships of cucumbers and melons unraveled: molecular phylogenetics of Cucumis and related genera (Benincaseae, Cucurbitaceae). Am J Bot 94:1256–1266

    Article  CAS  PubMed  Google Scholar 

  • Grzywacz B, Chobanov DP, Maryańska-Nadachowska A, Karamysheva TV, Heller KG, Warchalowska-Śliwa E (2014) A comparative study of genome organization and inferences for the systematics of two large bush-cricket genera of the tribe Barbitistini (Orthoptera: Tettigoniidae: Phaneropterinae). BMC Evol Biol 14:48

    Article  PubMed  PubMed Central  Google Scholar 

  • He QY, Cai ZX, Hu TH, Liu HJ, Bao CL, Mao WH, Jin WW (2015) Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC Plant Biol 15:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heitkam T, Petrasch S, Zakrzewski F, Kögler A, Wenke T, Wanke S, Schmidt T (2015) Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe’s oldest Camellia japonica. Chromosome Res 23:791–806

    Article  CAS  PubMed  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovene M, Wielgus SM, Simon PW, Buell CR, Jiang JM (2008) Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307–1317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Wu ZM, Lou QF, Wang D, Zhang WP, Chen JF (2010) Genetic diversity of Ty1-copia retrotransposons in a wild species of Cucumis (C. hystrix). Sci Hortic 127:46–53

    Article  CAS  Google Scholar 

  • Katsiotis A, Loukas M, Heslop-Harrison JS (2000) Repetitive DNA, genome and species relationships in Avena and Arrhenatherum (Poaceae). Ann Bot 86:1135–1142

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Koo DH, Nam YW, Choi D, Bang JW, de Jong H, Hur Y (2010) Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res 18:325–336

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907–919

    Article  CAS  PubMed  Google Scholar 

  • Lou QF, Iovene M, Spooner DM, Buell CR, Jiang JM (2010) Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma 119:435–442

    Article  CAS  PubMed  Google Scholar 

  • Lou QF, He YH, Cheng CY, Zhang ZH, Li J, Huang SW, Chen JF (2013) Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PLoS One 8:e62676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macas J, Požárková D, Navrátilová A, Neumann P (2000) Two new families of tandem repeats isolated from genus Vicia using genomic self-priming PCR. Mol Gen Genet 263:741–751

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Mészáros T, Nouzová M (2002) PlantSat: a specialized database for plant satellite repeats. Bioinformatics 18:28–35

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Navrátilová A, Koblížková A (2006) Sequence homogenization and chromosomal localization of VicTR-B satellites differ between closely related Vicia species. Chromosoma 115:437–447

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Goyal V (2014) Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function. Genom Proteom Bioinform 12:164–171

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navajas-Pérez R, Schwarzacher T, Ruiz Rejón M, Garrido-Ramos MA (2009) Characterization of RUSI, a telomere-associated satellite DNA, in the genus Rumex (Polygonaceae). Cytogenet Genome Res 124:81–89

    Article  PubMed  Google Scholar 

  • Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378

    Article  Google Scholar 

  • Novák P, Neumann P, Pech J, Steinhaisl J, Macas J (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793

    Article  PubMed  Google Scholar 

  • Peška V, Fajkusm P, Fojtová M, Dvořáčková M, Hapala J, Dvořáček V, Polanská P, Leitch A, Sýkorová E, Fajkus J (2015) Characterisation of an unusual telomere motif (TTTTTTAGGG)n in the plant Cestrum elegans (Solanaceae), a species with a large genome. Plant J 82:644–654

    Article  PubMed  Google Scholar 

  • Plohl M, Luchetti A, Meštrović N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    Article  CAS  PubMed  Google Scholar 

  • Renner SS, Schaefer H, Kocyan A (2007) Phylogenetics of Cucumis (Cucurbitaceae): cucumber (C. sativus) belongs in an Asian/Australian clade far from melon (C. melo). BMC Evol Biol 7:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard MM, Chen NW, Thareau V, Pflieger S, Blanchet S, Pedrosa-Harand A, Iwata A, Chavarro C, Jackson SA, Geffroy V (2013) The Subtelomeric khipu satellite repeat from Phaseolus vulgaris: lessons learned from the genome analysis of the andean genotype G19833. Front Plant Sci 4:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosato M, Galian JA, Rossello JA (2012) Amplification, contraction and genomic spread of a satellite DNA family (E180) in Medicago (Fabaceae) and allied genera. Ann Bot 109:773–782

    Article  CAS  PubMed  Google Scholar 

  • Sebastian P, Schaefer H, Telford IR, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Raina SN (2005) Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res 109:15–26

    Article  CAS  PubMed  Google Scholar 

  • Smit AFA, Hubley R, Green P (2014) RepeatMasker open-4.0.5 (RMLib: 20140131 & Dfam: 1.3). http://www.repeatmasker.org

  • Torres GA, Gong Z, Iovene M, Hirsch CD, Buell CR, Bryan GJ, Novák P, Macas J, Jiang JM (2011) Organization and evolution of subtelomeric satellite repeats in the potato genome. Genes Genom Genet 1:85–92

    CAS  Google Scholar 

  • Waminal NE, Ryu KB, Park BR, Kim HH (2014) Phylogeny of Cucurbitaceae species in Korea based on 5S rDNA non-transcribed spacer. Genes Genom 36:57–64

    Article  Google Scholar 

  • Weiss-Schneeweiss H, Leitch AR, McCann J, Jang T-S, Macas J (2015) Employing next generation sequencing to explore the repeat landscape of the plant genome. In: Hörandl E, Appelhans MS (eds) Next-generation sequencing in plant systematics. International Association for Plant Taxonomy Publishing, Germany, pp 1–25

    Google Scholar 

  • Weng Y, Li W, Devkota RN, Rudd JC (2005) Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet 110:462–469

    Article  CAS  PubMed  Google Scholar 

  • Yagi K, Pawelkowicz M, Osipowski P, Siedlecka E, Przybecki Z, Tagashira N, Hoshi Y, Malepszy S, Plader W (2015) Molecular cytogenetic analysis of Cucumis wild species distributed in Southern Africa: physical mapping of 5S and 45S rDNA with DAPI. Cytogenet Genome Res 146:80–87

    Article  PubMed  Google Scholar 

  • Yang LM, Koo DH, Li YH, Zhang XJ, Luan FS, Havey MJ, Jiang JF, Weng YQ (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 71:895–906

    Article  CAS  PubMed  Google Scholar 

  • Yang LM, Koo DH, Li DW, Zhang T, Jiang JM, Luan FS, Renner SS, Hénaff E, Sanseverino W, Garcia-Mas J, Casacuberta J, Senalik DA, Simon PW, Chen JF, Weng YQ (2014) Next-generation sequencing, FISH mapping and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J 77:16–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang YX, Cheng CY, Li J, Yang SQ, Wang YZ, Li ZA, Chen JF, Lou QF (2015) Chromosomal structures and repetitive sequences divergence in Cucumis species revealed by comparative cytogenetic mapping. BMC Genomics 16:730

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZT, Yang SQ, Li ZA, Zhang YX, Wang YZ, Cheng CY, Li J, Chen JF, Lou QF (2016) Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome 59:449–457

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Lu J, Zhang Z, Hu J, Huang S, Jin W (2011) Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. J Genet Genomics 38:39–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Natural Science Foundation of China (Nos. 31430075 and 31471872) and the National Key Research and Development Program of China (Nos. 2016YFD0101705 and 2016YFD0100204-25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfeng Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Qin, X., Cheng, C. et al. Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome. Planta 246, 749–761 (2017). https://doi.org/10.1007/s00425-017-2716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2716-6

Keywords

Navigation