Skip to main content

Advertisement

Log in

Vitamins for enhancing plant resistance

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This paper provides an overview on vitamins with inducing activities in plants, the molecular and cellular mechanisms implicated, and the hormonal signalling-network regulating this process. Moreover, it reports how vitamins might be part of the molecular events linked to induced resistance by the conventional elicitors.

Induced resistance (IR), exploiting the plant innate-defense system is a sustainable strategy for plant disease control. In the last decade, vitamins have been proven to act as inducers of disease resistance, and these findings have received an important attention owing to their safety and cost effectiveness. Vitamins, including thiamine (TH, vitamin B1), riboflavin (RF, vitamin B2), menadione sodium bisulfite (MSB, vitamin K3), Para-aminobenzoic acid (PABA, vitamin Bx), and folic acid (FA, vitamin B9) provided an efficient protection against a wide range of pathogens through the modulation of specific host-defense facets. However, other vitamins, such as ascorbic acid (AA, vitamin C) and tocopherols (vitamin E), have been shown to be a part of the molecular mechanisms associated to IR. The present review is the first to summarize what vitamins are acting as inducers of disease resistance in plants and how could they be modulated by the conventional elicitors. Thus, this report provides an overview on the protective abilities of vitamins and the molecular and cellular mechanisms underlying their activities. Moreover, it describes the hormonal-signalling network regulating vitamin-signal transduction during IR. Finally, a biochemical model describing how vitamins are involved in the establishment of IR process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ET:

Ethylene

JA:

Jasmonic acid

IR:

Induced resistance

PR:

Pathogenesis-related protein

SA:

Salicylic acid

NPR1 :

Non-expressor of PR1

References

  • Abdel-Monaim MF (2011) Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. Afr J Biotechnol 10:10842–10855

    Article  CAS  Google Scholar 

  • Ahn IP, Kim S, Lee YH (2005) Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol 138(3):1505–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn IP, Kim S, Lee YH, Suh SC (2007) Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol 143(2):838–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akberova S (2002) New biological properties of p-aminobenzoic acid. Biol Bull Russian Acad Sci 29(4):390–393

    Article  CAS  Google Scholar 

  • Almagro L, Carbonell-Bejerano P, Belchí-Navarro S, Bru R, Martínez-Zapater JM, Lijavetzky D, Pedreño MA (2014) Dissecting the transcriptional response to elicitors in vitis vinifera cells. PLoS One 9(10):e109777. doi:10.1371/journal.pone.0109777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Antognoni F, Faudale M, Poli F, Biondi S (2009) Methyl jasmonate differentially affects tocopherol content and tyrosine amino transferase activity in cultured cells of Amaranthus caudatus and Chenopodium quinoa. Plant Biol (Stuttgart, Germany) 11(2):161–169. doi:10.1111/j.1438-8677.2008.00110.x

    Article  CAS  Google Scholar 

  • Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569(1–3):1–9

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Mase K, Yoshioka H (2010) A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance. Plant J 62(6):911–924. doi:10.1111/j.0960-7412.2010.04206.x

    CAS  PubMed  Google Scholar 

  • Asensi-Fabado MA, Munne-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15(10):582–592. doi:10.1016/j.tplants.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  • Azami-Sardooei Z, França SC, De Vleesschauwer D, Höfte M (2010) Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxide-fueled resistance response. Physiol Mol Plant Pathol 75(1):23–29

    Article  CAS  Google Scholar 

  • Azzi A, Gysin R, Kempna P, Munteanu A, Negis Y, Villacorta L, Visarius T, Zingg JM (2004) Vitamin E mediates cell signaling and regulation of gene expression. Ann N Y Acad Sci 1031:86–95. doi:10.1196/annals.1331.009

    Article  CAS  PubMed  Google Scholar 

  • Bahuguna RN, Joshi R, Shukla A, Pandey M, Kumar J (2012) Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). Plant Physiol Biochem PPB 57:159–167. doi:10.1016/j.plaphy.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  • Bala R, Thukral AK (2011) Phytoremediation of Cr(VI) by Spirodela polyrrhiza (L.) Schleiden employing reducing and chelating agents. Int J Phytorem 13(5):465–491

    Article  CAS  Google Scholar 

  • Barth C, Moeder W, Klessig DF, Conklin PL (2004) The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol 134(4):1784–1792. doi:10.1104/pp.103.032185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10(4):425–431. doi:10.1016/j.pbi.2007.06.002

    Article  PubMed  Google Scholar 

  • Belhadj A, Saigne C, Telef N, Cluzet S, Bouscaut J, Corio-Costet MF, Merillon JM (2006) Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator. J Agric Food Chem 54(24):9119–9125. doi:10.1021/jf0618022

    Article  CAS  PubMed  Google Scholar 

  • Borges AA, Borges-Perez A, Fernandez-Falcon M (2003a) Effect of menadione sodium bisulfite, an inducer of plant defenses, on the dynamic of banana phytoalexin accumulation during pathogenesis. J Agric Food Chem 51(18):5326–5328

    Article  CAS  PubMed  Google Scholar 

  • Borges AA, Cools H, Lucas JA (2003b) Menadione sodium bisulphite: a novel plant defence activator which enhances local and systemic resistance to infection by Leptosphaeria maculans in oilseed rape. Plant Pathol 52(4):429–436

    Article  CAS  Google Scholar 

  • Borges AA, Borges-Pérez A, Fernández-Falcón M (2004) Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Protection 23(12):1245–1247

    Article  CAS  Google Scholar 

  • Borges AA, Dobon A, Expósito-Rodríguez M, Jiménez-Arias D, Borges-Pérez A, Casañas-Sánchez V, Pérez JA, Luis JC, Tornero P (2009) Molecular analysis of menadione-induced resistance against biotic stress in Arabidopsis. Plant Biotechnol J 7(8):744–762

    Article  CAS  PubMed  Google Scholar 

  • Borges AA, Jiménez-Arias D, Expósito-Rodríguez M, Sandalio LM, Pérez JA (2014) Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms. Front Plant Sci 5:642. doi:10.3389/fpls.2014.00642

    Article  PubMed  PubMed Central  Google Scholar 

  • Borges-Rodríguez AA, Borges-Pérez A (2010) Compositions for controlling the psyllid Trioza erytreae and Diaphorina citri, vectors of bacteria of the genus Candidatus liberibacter causal agents of the most serious citrus disease known as Huanglongbing (HLB). Patent WO2012/ 045901

  • Botanga CJ, Bethke G, Chen Z, Gallie DR, Fiehn O, Glazebrook J (2012) Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Mole Plant Microbe Interact MPMI 25(12):1628–1638. doi:10.1094/mpmi-07-12-0179-r

    Article  CAS  Google Scholar 

  • Boubakri H (2013) Metabolomics and systems biology. Metabol Off J Metabol Soc 2(7):145

    Google Scholar 

  • Boubakri H, Wahab MA, Chong J, Bertsch C, Mliki A, Soustre-Gacougnolle I (2012) Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiol Biochem PPB 57:120–133. doi:10.1016/j.plaphy.2012.05.016

    Article  CAS  PubMed  Google Scholar 

  • Boubakri H, Chong J, Poutaraud A, Schmitt C, Bertsch C, Mliki A, Masson J, Soustre-Gacougnolle I (2013a) Riboflavin (Vitamin B2) induces defence responses and resistance to Plasmopara viticola in grapevine. Eur J Plant Pathol 136(4):837–855

    Article  CAS  Google Scholar 

  • Boubakri H, Poutaraud A, Wahab MA, Clayeux C, Baltenweck-Guyot R, Steyer D, Marcic C, Mliki A, Soustre-Gacougnolle I (2013b) Thiamine modulates metabolism of the phenylpropanoid pathway leading to enhanced resistance to Plasmopara viticola in grapevine. BMC Plant Biol 13:31. doi:10.1186/1471-2229-13-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boubakri H, Wahab MA, Chong J, Gertz C, Gandoura S, Mliki A, Bertsch C, Soustre-Gacougnolle I (2013c) Methionine elicits H2O2 generation and defense gene expression in grapevine and reduces Plasmopara viticola infection. J Plant Physiol 170(18):1561–1568. doi:10.1016/j.jplph.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  • Boubakri H, Hadj-Brahim A, Schmitt C, Soustre-Gacougnolle I, Mliki A (2015) Biocontrol potential of chenodeoxycholic acid (CDCA) and endophytic Bacillus subtilis strains against the most destructive grapevine pathogens. N Z J Crop Hortic Sci 43(4):261–274. doi:10.1080/01140671.2015.1049620

    Article  CAS  Google Scholar 

  • Brauchle E, Thude S, Brucker SY, Schenke-Layland K (2014) Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Reports 4:4698. doi:10.1038/srep04698

    Google Scholar 

  • Caretto S, Nisi R, Paradiso A, De Gara L (2010) Tocopherol production in plant cell cultures. Mol Nutr Food Res 54(5):726–730. doi:10.1002/mnfr.200900397

    Article  CAS  PubMed  Google Scholar 

  • Chamnongpol S, Willekens H, Langebartels C, Van Montagu M, Inzé D, Van Camp W (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J 10(3):491–503. doi:10.1046/j.1365-313X.1996.10030491.x

    Article  CAS  Google Scholar 

  • Chen WJ, Delmotte F, Cervera SR, Douence L, Greif C, Corio-Costet MF (2007) At least two origins of fungicide resistance in grapevine downy mildew populations. Appl Environ Microbiol 73(16):5162–5172. doi:10.1128/AEM.00507-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipollini D, Heil M (2010) Costs and benefits of induced resistance to herbivores and pathogens in plants. CAB Rev 5(005):1–25. doi:10.1079/PAVSNNR20105005

    Article  Google Scholar 

  • Cipollini D, Lieurance DM (2012) Expression and costs of induced defense traits in Alliaria petiolata, a widespread invasive plant. Basic Appl Ecol 13(5):432–440. doi:10.1016/j.baae.2012.06.007

    Article  Google Scholar 

  • Conklin PL, Norris SR, Wheeler GL, Williams EH, Smirnoff N, Last RL (1999) Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc Natl Acad Sci USA 96(7):4198–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Saracco SA, Norris SR, Last RL (2000) Identification of ascorbic acid-deficient Arabidopsis thaliana mutants. Genetics 154(2):847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delaney T, Friedrich L, Ryals J (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci 92(14):6602–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15(9):2181–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dias CV, Mendes JS, dos Santos AC, Pirovani CP, da Silva Gesteira A, Micheli F, Gramacho KP, Hammerstone J, Mazzafera P, de Mattos Cascardo JC (2011) Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol Biochem PPB 49(8):917–922. doi:10.1016/j.plaphy.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  • Dong X (2001) Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol 4(4):309–314

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Beer SV (2000) Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90(8):801–811. doi:10.1094/phyto.2000.90.8.801

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Delaney TP, Bauer DW, Beer SV (1999) Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J 20(2):207–215

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10(2):71–78. doi:10.1016/j.tplants.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9(4):436–442. doi:10.1016/j.pbi.2006.05.014

    Article  PubMed  Google Scholar 

  • Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14(5):10242–10297. doi:10.3390/ijms140510242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gala R, Mita G, Caretto S (2005) Improving-tocopherol production in plant cell cultures. J Plant Physiol 162(7):782–784. doi:10.1016/j.jplph.2005.04.010

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signaling events induced by elicitors of plant defenses. Mole Plant Microbe Interact MPMI 19(7):711–724. doi:10.1094/mpmi-19-0711

    Article  CAS  Google Scholar 

  • Green R, Fluhr R (1995) UV-B-Induced PR-1 accumulation is mediated by active oxygen species. Plant Cell 7(2):203–212. doi:10.1105/tpc.7.2.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada AM, Jonsson LM (2013) Thiamine treatments alleviate aphid infestations in barley and pea. Phytochemistry 94:135–141. doi:10.1016/j.phytochem.2013.05.012

    Article  CAS  PubMed  Google Scholar 

  • Hann DR, Rathjen JP (2010) The long and winding road: virulence effector proteins of plant pathogenic bacteria. Cell Mol Life Sci 67(20):3425–3434. doi:10.1007/s00018-010-0428-1

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88(4):645–654

    Article  CAS  Google Scholar 

  • Heil M, Fiala B, Maschwitz U, Linsenmair KE (2001) On benefits of indirect defence: short-and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126(3):395–403

    Article  Google Scholar 

  • Jiang F, Zhang Y, Dusting GJ (2011) NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev 63(1):218–242. doi:10.1124/pr.110.002980

    Article  CAS  PubMed  Google Scholar 

  • Jimenez A, Hernandez JA, Del Rio LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114(1):275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Kelman A, Cook R (1977) Plant pathology in the People’s Republic of China. Ann Rev Phytopathol 15(1):409–429

    Article  Google Scholar 

  • Khan TA, Mazid M, Mohammad F (2012) Potential of Ascorbic acid against oxidative burst in plants under biotic stress: a review. J Ind Res Technol 2(2):72–80

    Google Scholar 

  • Komárek M, Čadková E, Chrastný V, Bordas F, Bollinger JC (2010) Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int 36(1):138–151. doi:10.1016/j.envint.2009.10.005

    Article  PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5(4):325–331

    Article  CAS  PubMed  Google Scholar 

  • Kus JV, Zaton K, Sarkar R, Cameron RK (2002) Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell 14(2):479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann J (2009) ‘Terra preta Nova – where to from here?’. In: Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins A (eds) Terra preta Nova: a tribute to Wim Sombroek, Springer, Berlin, pp 473–486

    Google Scholar 

  • Lehmann M, Laxa M, Sweetlove LJ, Fernie AR, Obata T (2012) Metabolic recovery of Arabidopsis thaliana roots following cessation of oxidative stress. Metabol Off J Metabol Soc 8(1):143–153. doi:10.1007/s11306-011-0296-1

    CAS  Google Scholar 

  • Liu S, Liu Z, Fitt BD, Evans N, Foster S, Huang Y, Latunde-Dada A, Lucas J (2006) Resistance to Leptosphaeria maculans (phoma stem canker) in Brassica napus (oilseed rape) induced by L. biglobosa and chemical defence activators in field and controlled environments. Plant Pathol 55(3):401–412

    Article  CAS  Google Scholar 

  • Liu F, Wei F, Wang L, Liu H, Zhu X, Liang Y (2010) Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol Mol Plant Pathol 74(5):330–336

    Article  CAS  Google Scholar 

  • Lyon G (2007) Agents that can elicit induced resistance. Induced resistance for plant defence: a sustainable approach to crop protection. Blackwell Publishing Ltd, Oxford, pp 9–29

    Book  Google Scholar 

  • Maki T, Takeda K (2000) Benzoic acid and derivatives. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi:10.1002/14356007.a03_555

  • Maksymiec W, Krupa Z (2002) The in vivo and in vitro influence of methyl jasmonate on oxidative processes in Arabidopsis thaliana leaves. Acta Physiol Plant 24(4):351–357. doi:10.1007/s11738-002-0029-1

    Article  CAS  Google Scholar 

  • McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible WR, Udvardi MK, Kazan K (2005) Repressor-and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression. Plant Physiol 139(2):949–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee M, Larrimore KE, Ahmed NJ, Bedick TS, Barghouthi NT, Traw MB, Barth C (2010) Ascorbic acid deficiency in arabidopsis induces constitutive priming that is dependent on hydrogen peroxide, salicylic acid, and the NPR1 gene. Mole Plant Microbe Interact MPMI 23(3):340–351. doi:10.1094/mpmi-23-3-0340

    Article  CAS  Google Scholar 

  • Munne-Bosch S, Weiler EW, Alegre L, Muller M, Duchting P, Falk J (2007) Alpha-tocopherol may influence cellular signaling by modulating jasmonic acid levels in plants. Planta 225(3):681–691. doi:10.1007/s00425-006-0375-0

    Article  CAS  PubMed  Google Scholar 

  • Ndamukong I, Abdallat AA, Thurow C, Fode B, Zander M, Weigel R, Gatz C (2007) SA-inducible Arabidopsis glutaredoxin interacts with TGA factors and suppresses JA-responsive PDF1. 2 transcription. Plant J 50(1):128–139

    Article  CAS  PubMed  Google Scholar 

  • Negis Y, Aytan N, Ozer N, Ogru E, Libinaki R, Gianello R, Azzi A, Zingg JM (2006) The effect of tocopheryl phosphates on atherosclerosis progression in rabbits fed with a high cholesterol diet. Arch Biochem Biophys 450(1):63–66. doi:10.1016/j.abb.2006.02.027

    Article  CAS  PubMed  Google Scholar 

  • Pastor V, Luna E, Ton J, Cerezo M, Garcia-Agustin P, Flors V (2013) Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis. Mole Plant Microbe Interact MPMI 26(11):1334–1344. doi:10.1094/mpmi-04-13-0117-r

    Article  CAS  Google Scholar 

  • Pavet V, Olmos E, Kiddle G, Mowla S, Kumar S, Antoniw J, Alvarez ME, Foyer CH (2005) Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis. Plant Physiol 139(3):1291–1303. doi:10.1104/pp.105.067686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Poelman EH, Van Wees SCM, Dicke M (2013) Induced plant responses to microbes and insects. Front Plant Sci 4:475. doi:10.3389/fpls.2013.00475

    Article  PubMed  PubMed Central  Google Scholar 

  • Pushpalatha H, Mythrashree S, Shetty R, Geetha N, Sharathchandra R, Amruthesh K, Shetty HS (2007) Ability of vitamins to induce downy mildew disease resistance and growth promotion in pearl millet. Crop Prot 26(11):1674–1681

    Article  CAS  Google Scholar 

  • Puthusseri B, Divya P, Lokesh V, Neelwarne B (2012) Enhancement of folate content and its stability using food grade elicitors in coriander (Coriandrum sativum L.). Plant Foods Human Nutr (Dordrecht, Netherlands) 67(2):162–170. doi:10.1007/s11130-012-0285-1

    Article  CAS  Google Scholar 

  • Reddy AS (2001) Calcium: silver bullet in signaling. Plant Sci 160(3):381–404

    Article  CAS  PubMed  Google Scholar 

  • Reglinski T, Vanneste J, Wurms K, Gould E, Spinelli F, Rikkerink E (2013) Using fundamental knowledge of induced resistance to develop control strategies for bacterial canker of kiwifruit caused by Pseudomonas syringae pv actinidiae. Front Plant Sci 4. doi:10.3389/fpls.2013.00024

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saikia R, Yadav M, Varghese S, Singh BP, Gogoi DK, Kumar R, Arora DK (2006) Role of riboflavin in induced resistance against Fusarium wilt and charcoal rot diseases of chickpea. Plant Pathol J 22(4):339–347

    Article  Google Scholar 

  • Serrano M, Coluccia F, Torres M, L’Haridon F, Métraux JP (2014) The cuticle and plant defense to pathogens. Front Plant Sci 5:274. doi:10.3389/fpls.2014.00274

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheehan D, MEADE G, Foley V, Dowd C (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra I, Vidal-Valverde C (1999) Kinetics of free and glycosylated B6 vitamers, thiamin and riboflavin during germination of pea seeds. J Sci Food Agric 79(2):307–310

    Article  CAS  Google Scholar 

  • Song GC, Choi HK, Ryu CM (2013) The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann Bot 111(5):925–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taheri P, Hofte M (2007) Riboflavin-induced resistance against rice sheath blight functions through the potentiation of lignin formation and jasmonic acid signalling pathway. Commun Agric Appl Biol Sci 72(2):309–313

    CAS  PubMed  Google Scholar 

  • Taheri P, Tarighi S (2010) Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J Plant Physiol 167(3):201–208. doi:10.1016/j.jplph.2009.08.003

    Article  CAS  PubMed  Google Scholar 

  • Taheri P, Tarighi S (2011) A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J Plant Physiol 168(10):1114–1122. doi:10.1016/j.jplph.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151(1):421–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14(suppl 1):S153–S164. doi:10.1105/tpc.000679

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Hulten M, Pelser M, Van Loon L, Pieterse CM, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103(14):5602–5607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Loon LC, Van Strien EA (1999) The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol 55(2):85–97. doi:10.1006/pmpp.1999.0213

    Article  Google Scholar 

  • Van Wees SCM, Van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11(4):443–448. doi:10.1016/j.pbi.2008.05.005

    Article  PubMed  CAS  Google Scholar 

  • Walters D, Avrova A, Bingham I, Burnett F, Fountaine J, Havis N, Hoad S, Hughes G, Looseley M, Oxley SP, Renwick A, Topp CE, Newton A (2012) Control of foliar diseases in barley: towards an integrated approach. Eur J Plant Pathol 133(1):33–73. doi:10.1007/s10658-012-9948-x

    Article  CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64(5):1263–1280. doi:10.1093/jxb/ert026

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cao G, Wang X, Miao J, Liu X, Chen Z, Qu LJ, Gu H (2008) Identification and characterization of COI1-dependent transcription factor genes involved in JA-mediated response to wounding in Arabidopsis plants. Plant Cell Rep 27(1):125–135

    Article  CAS  PubMed  Google Scholar 

  • West J, Kharbanda P, Barbetti M, Fitt BD (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50(1):10–27

    Article  Google Scholar 

  • Wittek F, Kanawati B, Wenig M, Hoffmann T, Franz-Oberdorf K, Schwab W, Schmitt-Kopplin P, Vlot AC (2015) Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola. Mole Plant Pathol 16(6):616–622. doi:10.1111/mpp.12216

    Article  CAS  Google Scholar 

  • Wolucka BA, Goossens A, Inzé D (2005) Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. J Exp Bot 56(419):2527–2538. doi:10.1093/jxb/eri246

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004) COS1: an Arabidopsis coronatine insensitive1 suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell Online 16(5):1132–1142

    Article  CAS  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Yang SY, Park MR, Kim IS, Kim YC, Yang JW, Ryu CM (2011) 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovotrum SCC1 in tobacco. Eur J Plant Pathol 129(3):371–378

    Article  CAS  Google Scholar 

  • Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H (2009) Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J Integr Plant Biol 51(2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Sun A, Xing D (2013) Modulation of cellular redox status by thiamine-activated NADPH oxidase confers Arabidopsis resistance to Sclerotinia sclerotiorum. J Exp Bot 64(11):3261–3272

    Article  CAS  PubMed  Google Scholar 

  • Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12(4):414–420

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks the Ministry of Higher Education and Scientific Research of Tunisia for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Boubakri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boubakri, H., Gargouri, M., Mliki, A. et al. Vitamins for enhancing plant resistance. Planta 244, 529–543 (2016). https://doi.org/10.1007/s00425-016-2552-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2552-0

Keywords

Navigation