Skip to main content

Advertisement

Log in

Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Discrete categories of seed physiology can be explained through a unified concept of the structural and molecular mobility responses within cells to drying.

Tolerance of desiccation is typically described by a threshold or low water content limit to survival. This convention provides fairly good distinction between orthodox and recalcitrant seeds, which show thresholds of less than about 0.07 and greater than about 0.2 g H2O g DW−1, respectively. Threshold water contents, however, are not direct measures of the intensity of water stress tolerated by seeds, nor are they measures of cell response to water stress. More direct criteria, that accommodate both spatial and temporal effects of water loss, are required to explain variation of desiccation tolerance and longevity in seeds from diverse genetic backgrounds and growth conditions. This essay presents the argument that changes in cellular volume directly quantify primary responses to desiccating stress in a context that also links damage, as cellular constituents compress, and protection, as compressed molecules form stabilizing structure. During desiccation, fluid cytoplasm solidifies, and the newly formed spatial relationships among molecules determine whether and how long viability is maintained. The diversity of seed behaviors suggests complexity and opportunity to discover molecules and mechanisms that regulate survival and perception of time in cells that lack metabolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

DW:

Dry weight

LN:

Liquid nitrogen

References

  • Alpert P (2006) Constraints of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Article  PubMed  Google Scholar 

  • Angell CA (2002) Liquid fragility and the glass transition in water and aqueous solutions. Chem Rev 102:2627–2650

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros D, Walters C (2011) Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant J 68:607–619

    Article  CAS  PubMed  Google Scholar 

  • Berjak P, Pammenter NW (2008) From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot 101:213–228

    Article  PubMed Central  PubMed  Google Scholar 

  • Black M, Bewley JD, Halmer P (eds) (2006) The encyclopedia of seeds. Science, technology and uses. CAB International, Wallingford

    Google Scholar 

  • Buitink J, Leprince O (2008) Intracellular glasses and seed survival in the dry state. C R Biol 331:788–795

    Article  CAS  PubMed  Google Scholar 

  • Chatelain E, Hundertmark M, Leprince O, Le Gall S, Satour P, Deligny-Penninck S, Rogniaux H, Buitink J (2012) Temporal profiling of the heat-stable proteome during late maturation of Medicago truncatula seeds identifies a restricted subset of late embryogenesis abundant proteins associated with longevity. Plant Cell Environ 35:1440–1455

    Article  CAS  PubMed  Google Scholar 

  • Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Colville L, Bradley EL, Lloyd AS, Pritchard HW, Castle L, Kranner I (2012) Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. J Exp Bot 63:6519–6530

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crane J, Kovach D, Gardner C, Walters C (2006) Triacylglycerol phase and ‘intermediate’ seed storage physiology: a study of Cuphea carthagenensis. Planta 223:1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Daws MI, Cleland H, Chmielarz P et al (2006a) Variable desiccation tolerance in Acer pseudoplatanus seeds in relation to developmental conditions: a case of phenotypic recalcitrance? Funct Plant Biol 33:59–66

    Article  Google Scholar 

  • Daws MI, Garwood NC, Pritchard HW (2006b) Prediction of desiccation sensitivity in seeds of woody species: a probabilistic model based on two seed traits and 104 species. Ann Bot 97:667–674

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dekkers BJ, Costa MCD, Maia J, Bentsink L, Ligterink W, Hilhorst HWM (2015) Acquisition and loss of desiccation tolerance in seeds: from experimental model to biological relevance. Planta 241:563–577

    Article  CAS  PubMed  Google Scholar 

  • Dussert S, Chabrillange N, Engelmann F, Louarn J, Anthony F, Hamon S (2000) Relationship between seed desiccation sensitivity, seed water content at maturity and climatic characteristics of native environments of nine Coffea L. species. Seed Sci Res 10:293–300

    Google Scholar 

  • Eira MTS, da Silva EAA, De Castro RD, Dussert S, Walters C, Bewley JD, Hilhorst HWM (2006) Coffee seed physiology. Braz J Plant Physiol 18:149–163

    Article  CAS  Google Scholar 

  • Ellis RH, Hong TD (2006) Temperature sensitivity of the low-moisture-content limit to negative seed longevity—moisture content relationships in hermetic storage. Ann Bot 97:785–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis RH, Roberts EH (1980) Improved equations for the prediction of seed longevity. Ann Bot 45:13–30

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1989) A comparison of the low-moisture-content limit to the logarithmic relation between seed moisture and longevity in twelve species. Ann Bot 63:601–611

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH, Tao K-L (1990a) Low moisture content limits to relations between seed longevity and moisture. Ann Bot 65:493–504

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1990b) An intermediate category of seed storage behaviour? I. Coffee. J Exp Bot 41:1167–1174

    Article  Google Scholar 

  • Ellis RH, Hong TD, Roberts EH (1991a) Effect of storage temperature and moisture on the germination of papaya seeds. Seed Sci Res 1:69–72

    Google Scholar 

  • Ellis RH, Hong TD, Roberts EH, Soetisna U (1991b) Seed storage behaviour in Elaeis guineensis. Seed Sci Res 1:99–104

    Google Scholar 

  • FAO (2013) Genebank standards for plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • Farrant JM, Walters C (1998) Ultrastructural and biophysical changes in developing embryos of Aesculus hippocastanum in relation to the acquisition of tolerance to drying. Physiol Plant 104:513–524

    Article  CAS  Google Scholar 

  • Farrant JM, Pammenter NW, Berjak P, Walters C (1997) Subcellular organization and metabolic activity during the development of seeds that attain different levels of desiccation tolerance. Seed Sci Res 7:135–144

    Article  CAS  Google Scholar 

  • Hor YL, Kim YJ, Ugap A, Engelmann F, Dussert S (2005) Optimal hydration status for cryopreservation of intermediate oily seeds: citrus as a case study. Ann Bot 95:1153–1161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hyman AA, Simons K (2012) Beyond oil and water—phase transitions in cells. Science 337:1047–1049

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AE, Roberts EH (1983) Viability of lettuce seeds. I. Survival during hermetic storage. J Exp Bot 34:620–630

    Article  Google Scholar 

  • Justice OL, Bass LN (1978) Principles and practices of seed storage. Issue 506 of Agriculture Handbook. Science and Education Administration, USA

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Leprince O, Harren FJM, Buitink J, Alberda M, Hoekstra FA (2000) Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles. Plant Physiol 122:597–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, 2nd edn. Academic Press, New York, London

    Google Scholar 

  • Mène-Saffrané L, Jones AD, DellaPenna D (2010) Plastochromanol-8 and tocopherols are essential lipid-soluble antioxidants during seed desiccation and quiescence in Arabidopsis. Proc Natl Acad Sci USA 107:17815–17820

    Article  PubMed Central  PubMed  Google Scholar 

  • Meryman HT (1974) Freezing injury and its prevention in living cells. Annu Rev Biophys Bioeng 3:341–363

    Article  CAS  PubMed  Google Scholar 

  • Michalak M, Plitta BP, Tylkowski T, Chmielarz P, Suszka J (2015) Desiccation tolerance and cryopreservation of seeds of black poplar (Populus nigra L.), a disappearing tree species in Europe. Eur J For Res 134:53–60

    Article  CAS  Google Scholar 

  • Mira S, González-Benito ME, Hill LM, Walters C (2010) Characterization of volatile production during storage of lettuce (Lactuca sativa) seed. J Exp Bot 61:3915–3924

    Article  CAS  PubMed  Google Scholar 

  • Mondoni A, Probert RJ, Rossi G, Vegini E, Hay FR (2010) Seeds of alpine plants are short lived: implications for long-term conservation. Ann Bot 107:171–179

    Article  PubMed Central  PubMed  Google Scholar 

  • Mouillon J-M, Eriksson SK, Harryson P (2008) Mimicking the plant cell interior under water stress by macromolecular crowding: disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiol 148:1925–1937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagel M, Kranner I, Neumann K, Rolletschek H, Seal CE, Colville L, Fernández-Marín B, Börner A (2015) Genome-wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell Environ 38:1011–1022

    Article  PubMed  Google Scholar 

  • Nguyen TP, Keizer P, van Eeuwijk F, Smeekens S, Bentsink L (2012) Natural variation for seed longevity and seed dormancy are negatively correlated in Arabidopsis. Plant Physiol 160:2083–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niedzielski M, Walters C, Luczak W, Hill LM, Wheeler LJ, Puchalski J (2009) Assessment of variation in seed longevity within rye, wheat and the intergeneric hybrid triticale. Seed Sci Res 19:213–224

    Article  Google Scholar 

  • Oliver MJ, Velten J, Mishler BD (2005) Desiccation tolerance in bryophytes: a reflection of the primitive strategy for plant survival in dehydrating habitats? Integr Comp Biol 45:788–799

    Article  PubMed  Google Scholar 

  • Pérez HE, Hill LM, Walters C (2012) An analysis of embryo development in palm: interactions between dry matter accumulation and water relations in Pritchardia remota (Arecaceae). Seed Sci Res 22:97–111

    Article  Google Scholar 

  • Personat J-M, Tejedor-Cano J, Prieto-Dapena P, Almoguera C, Jordano J (2014) Co-overexpression of two heat shock factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress. BMC Plant Biol 14:56. doi:10.1186/1471-2229-14-56

    Article  PubMed Central  PubMed  Google Scholar 

  • Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann Bot 104:57–69

    Article  PubMed Central  PubMed  Google Scholar 

  • Rajjou L, Debeaujon I (2008) Seed longevity: survival and maintenance of high germination ability of dry seeds. C R Biol 331:796–805

    Article  PubMed  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, Job D (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148:620–641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rivera-Najera LY, Saab-Rincón G, Battaglia M, Amero C, Pulido NO, García-Hernández E, Solórzano RM, Reyes JL, Covarrubias AA (2014) A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties. J Biol Chem 289:31995–32009

    Article  CAS  PubMed  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Roberts EH, Ellis RH (1989) Water and seed survival. Ann Bot 63:39–52

    Google Scholar 

  • Royal Botanic Gardens Kew (2015) Seed Information Database (SID). Version 7.1. http://data.kew.org/sid/. Accessed 8 Apr 2015

  • Sacandé M, Buitink J, Hoekstra FA (2000) A study of water relations in neem (Azadirachta indica) seed that is characterized by complex storage behavior. J Exp Bot 51:635–643

    Article  PubMed  Google Scholar 

  • Schwember AR, Bradford KJ (2010) Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J Exp Bot 61:4423–4436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103:4113–4121

    Article  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Webb MS (1995) Freeze-induced destabilization of cellular membranes and lipid bilayers. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Sun WQ, Leopold AC (1994) Glassy state and seed storage stability: a viability equation analysis. Ann Bot 74:601–604

    Article  Google Scholar 

  • Tweddle JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. J Ecol 91:294–304

    Article  Google Scholar 

  • Verdier J, Lalanne D, Pelletier S, Torres-Jerez I, Righetti K, Bandyopadhyay K, Leprince O, Chatelain E, Vu BL, Gouzy J, Gamas P, Udvardi MK, Buitink J (2013) A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol 163:757–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation tolerance. In: Kigel J, Galeli G (eds) Seed development and germination. Marcel Dekker, New York, pp 237–271

    Google Scholar 

  • Vertucci CW, Leopold AC (1984) Bound water in soybean seed and its relation to respiration and imbibitional damage. Plant Physiol 75:114–117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vertucci CW, Leopold AC (1987) Water binding in legume seeds. Plant Physiol 85:224–231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vertucci CW, Roos EE (1990) Theoretical basis of protocols for seed storage. Plant Physiol 94:1019–1023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walters C (1998) Understanding the mechanisms and kinetics of seed aging. Seed Sci Res 8:223–244

    Article  CAS  Google Scholar 

  • Walters C (2004) Temperature dependency of molecular mobility in preserved seeds. Biophys J 86:1253–1258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walters C, Koster KL (2007) Structural dynamics and desiccation damage in plant reproductive organs. In: Jenks MA, Wood AJ (eds) Plant desiccation tolerance. Blackwell Publishing, Iowa, pp 251–280

    Chapter  Google Scholar 

  • Walters C, Reid JL, Walker-Simmons MK (1997) Heat soluble proteins extracted from wheat embryos have tightly bound sugars and unusual hydration properties. Seed Sci Res 7:125–134

    Article  CAS  Google Scholar 

  • Walters C, Pammenter NW, Berjak P, Crane J (2001) Desiccation damage, accelerated ageing and respiration in desiccation tolerant and sensitive seeds. Seed Sci Res 11:135–148

    Google Scholar 

  • Walters C, Farrant JM, Pammenter NW, Berjak P (2002) Desiccation and damage. In: Black M, Pritchard HW (eds) Desiccation and survival in plants: drying without dying. CAB International, Wallingford, pp 263–291

    Chapter  Google Scholar 

  • Walters C, Hill LM, Wheeler LJ (2005a) Dying while dry: kinetics and mechanisms of deterioration in desiccated organisms. Integr Comp Biol 45:751–758

    Article  PubMed  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005b) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  • Walters C, Wesley-Smith J, Crane J, Hill LM, Chmielarz P, Pammenter NW, Berjak P (2007) Cryopreservation of recalcitrant (i.e. desiccation-sensitive) seeds. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer Publishing, New York, pp 465–484

    Google Scholar 

  • Walters C, Ballesteros D, Vertucci VA (2010) Structural mechanics of seed deterioration: standing the test of time. Plant Sci 179:565–573

    Article  CAS  Google Scholar 

  • Walters C, Berjak P, Pammenter N, Kennedy K, Raven P (2013) Preservation of recalcitrant seeds. Science 339:915–916

    Article  CAS  PubMed  Google Scholar 

  • Wesley-Smith J, Berjak P, Pammenter NW, Walters C (2014) Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Ann Bot 113:695–709

    Article  PubMed Central  PubMed  Google Scholar 

  • Wolkers WF, Alberda M, Koornneef M, Léon-Kloosterziel KM, Hoekstra FA (1998) Properties of proteins and the glassy matrix in maturation-defective mutant seeds of Arabidopsis thaliana. Plant J 16:133–143

    Article  CAS  PubMed  Google Scholar 

  • Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta (Protein Structure and Molecular Enzymology) 1544:196–206

    Article  CAS  Google Scholar 

  • Xia K, Daws MI, Stuppy W, Zhou ZK, Pritchard HW (2012) Rates of water loss and uptake in recalcitrant fruits of Quercus species are determined by pericarp anatomy. PLoS One 7:e47368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xia K, Hill LM, Li D-Z, Walters C (2014) Factors affecting stress tolerance in recalcitrant embryonic axes from seeds of four Quercus (Fagaceae) species native to the USA or China. Ann Bot 114:1747–1759

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Walters.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Special topic: Desiccation Biology. Guest editors: Olivier Leprince and Julia Buitink.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walters, C. Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta 242, 397–406 (2015). https://doi.org/10.1007/s00425-015-2312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2312-6

Keywords