Skip to main content
Log in

TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

TraeALDH7B1 - 5A , encoding aldehyde dehydrogenase 7 in wheat, conferred significant drought tolerance to Arabidopsis , supported by molecular biological and physiological experiments.

Drought stress significantly affects wheat yields. Aldehyde dehydrogenase (ALDH) is a family of enzymes catalyzing the irreversible conversion of aldehydes into acids to decrease the damage caused by abiotic stresses. However, no wheat ALDH member has been functionally characterized to date. Here, we obtained a differentially expressed EST encoding ALDH7 from a cDNA-AFLP library of wheat that was treated with polyethylene glycol 6000. The three full-length homologs of TraeALDH7B1 were isolated by searching the NCBI database and by homolog-based cloning method. Using nulli-tetrasomic lines we located them on wheat chromosomes 5A, 5B and 5D, and named them as TraeALDH7B1-5A, -5B and -5D, respectively. Gene expression profiles indicated that the expressions of all three genes were induced in roots, leaves, culms and spikelets under drought and salt stresses. Enzymatic activity analysis showed that TraeALDH7B1-5A had acetaldehyde dehydrogenase activity. For further functional analysis, we developed transgenic Arabidopsis lines overexpressing TraeALDH7B1-5A driven by the cauliflower mosaic virus 35S promoter. Compared with wild type Arabidopsis, 35S::TraeALDH7B1-5A plants significantly enhanced the tolerance to drought stress, which was demonstrated by up-regulation of stress responsive genes and physiological evidence of primary root length, maintenance of water retention and contents of chlorophyll and MDA. The combined results indicated that TraeALDH7B1-5A is an important drought responsive gene for genetic transformation to improve drought tolerance in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

ALDH:

Aldehyde dehydrogenase

DAS:

Days after sowing

DAR:

Days after rewatering

EST:

Expressed sequence tag

NAD:

Nicotinamide-adenine dinucleotide

NADP:

Nicotinamide-adenine dinucleotide phosphate

PEG:

Polyethylene glycol

WT:

Wild type

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in Abscisic acid signaling. Plant Cell Online 15:63–78

    Article  CAS  Google Scholar 

  • Bachem CWB, Van Der Hoeven RS, De Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753

    Article  CAS  PubMed  Google Scholar 

  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance? Trends Plant Sci 6:284–286

    Article  CAS  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 23:23–58

    Article  Google Scholar 

  • Bouché N, Fait A, Bouchez D, Møller SG, Fromm H (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the γ-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc Natl Acad Sci 100:6843–6848

    Article  PubMed Central  PubMed  Google Scholar 

  • Brocker C, Vasiliou M, Carpenter S, Carpenter C, Zhang Y, Wang X, Kotchoni S, Wood A, Kirch H-H, Kopečný D, Nebert D, Vasiliou V (2013) Aldehyde dehydrogenase (ALDH) superfamily in plants: gene nomenclature and comparative genomics. Planta 237:189–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen X, Zeng Q, Wood AJ (2002) The stress-responsive Tortula ruralis gene ALDH21A1 describes a novel eukaryotic aldehyde dehydrogenase protein family. J Plant Physiol 159:677–684

    Article  CAS  Google Scholar 

  • Chugh V, Kaur N, Gupta A (2011) Role of antioxiationi and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging. Indian J Biochem Biophys 48:346–352

    CAS  PubMed  Google Scholar 

  • Deuschle K, Funck D, Hellmann H, Däschner K, Binder S, Frommer WB (2001) A nuclear gene encoding mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase and its potential role in protection from proline toxicity. Plant J 27:345–356

    Article  CAS  PubMed  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Chu J, Sun X, Wang J, Yan C (2012) Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Anal Sci 28:1081–1087

    Article  CAS  PubMed  Google Scholar 

  • Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hou Q, Bartels D (2014) Comparative study of the aldehyde dehydrogenase (ALDH) gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes. Ann Bot. doi:10.1093/aob/mcu152

    PubMed  Google Scholar 

  • Hsiao TC, Xu LK (2000) Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. J Exp Bot 51:1595–1616

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Ma X, Wang Q, Gao Y, Xue Y, Niu X, Yu G, Liu Y (2008) Significant improvement of stress tolerance in tobacco plants by overexpressing a stress-responsive aldehyde dehydrogenase gene from maize (Zea mays). Plant Mol Biol 68:451–463

    Article  CAS  PubMed  Google Scholar 

  • Inostroza-Blancheteau C, Reyes-Díaz M, Aquea F, Nunes-Nesi A, Alberdi M, Arce-Johnson P (2011) Biochemical and molecular changes in response to aluminium-stress in highbush blueberry (Vaccinium corymbosum L.). Plant Physiol Biochem 49:1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG, Schabenberger O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    Article  CAS  PubMed  Google Scholar 

  • Jakoby WB, Ziegler DM (1990) The enzymes of detoxication. J Biol Chem 265:20715–20718

    CAS  PubMed  Google Scholar 

  • James P, Halladay J, Craig EA (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kar RK (2011) Plant responses to water stress: role of reactive oxygen species. Plant Signal Behav 6:1741–1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirch HH, Nair A, Bartels D (2001) Novel ABA- and dehydration-inducible aldehyde dehydrogenase genes isolated from the resurrection plant Craterostigma plantagineum and Arabidopsis thaliana. Plant J 28:555–567

    Article  CAS  PubMed  Google Scholar 

  • Kirch HH, Bartels D, Wei Y, Schnable PS, Wood AJ (2004) The ALDH gene superfamily of Arabidopsis. Trends Plant Sci 9:371–377

    Article  CAS  PubMed  Google Scholar 

  • Kirch HH, Schlingensiepen S, Kotchoni S, Sunkar R, Bartels D (2005) Detailed expression analysis of selected genes of the aldehyde dehydrogenase (ALDH) gene superfamily in Arabidopsis thaliana. Plant Mol Biol 57:315–332

    Article  CAS  PubMed  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Korpelainen H, Kostamo K (2010) An improved and cost-effective cDNA-AFLP method to investigate transcription-derived products when high throughput sequencing is not available. J Biotechnol 145:43–46

    Article  CAS  PubMed  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Léon-Kloosterziel KM, Gil MA, Ruijs GJ, Jacobsen SE, Olszewski NE, Schwartz SH, Zeevaart JAD, Koornneef M (1996) Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J 10:655–661

    Article  PubMed  Google Scholar 

  • Li J, Besseau S, Törönen P, Sipari N, Kollist H, Holm L, Palva ET (2013) Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol 200:457–472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    CAS  Google Scholar 

  • Lindahl R (1992) Aldehyde dehydrogenases and their role in Carcinogenesis. Crit Rev Biochem Mol Biol 27:283–335

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun Y, Rose JR, Chung Y, Hsiao C, Chang W, Kuo I, Perozich J, Lindahl R, John H, Wang B (1997) The first structure of an aldehyde dehydrogenase reveals novel interactions between NAD and the Rossmann fold. Nat Struct Biol 4:317–326

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell Online 10:1391–1406

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative fene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Xiong LE, Lee BH, Ishitani M, Lee H, Zhang CQ, Zhu JK (2001) FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev 15:1971–1984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Trujillo M, Limones-Briones V, Cabrera-Ponce J, Herrera-Estrella L (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22:63–70

    Article  CAS  Google Scholar 

  • Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ni L, Sheikh S, Weiner H (1997) Involvement of glutamate 399 and lysine 192 in the mechanism of human liver mitochondrial aldehyde dehydrogenase. J Biol Chem 272:18823–18826

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Tani A, Kimbara K, Kawai F (2005) A novel nicotinoprotein aldehyde dehydrogenase involved in polyethylene glycol degradation. Appl Microbiol Biotechnol 68:639–646

    Article  CAS  PubMed  Google Scholar 

  • op den Camp R R, Kuhlemeier C (1997) Aldehyde dehydrogenase in tobacco pollen. Plant Mol Biol 35:355–365

    Article  Google Scholar 

  • Perozich J, Nicholas H, Wang BC, Lindahl R, Hempel J (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci 8:137–146

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plaxton W (1996) The organization and regulation of plant glycolysis. Ann Rev Plant Physiol Plant Mol Biol 47:185–214

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulphonium compounds in high plants. Ann Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rodrigues SM, Andrade MO, Gomes APS, DaMatta FM, Baracat-Pereira MC, Fontes EPB (2006) Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress. J Exp Bot 57:1909–1918

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Paul S, Basu S (2013) Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep 32:985–1006

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Saleki R, Young PG, Lefebvre DD (1993) Mutants of Arabidopsis thaliana capable of germination under saline conditions. Plant Physiol 101:839–845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shen Y, Zhang Y, Yang C, Lan Y, Liu L, Liu S, Chen Z, Ren G, Wan J (2012) Mutation of OsALDH7 causes a yellow-colored endosperm associated with accumulation of oryzamutaic acid A in rice. Planta 235:433–441

    Article  CAS  PubMed  Google Scholar 

  • Shin JH, Kim SR, An G (2009) Rice aldehyde dehydrogenase 7 is needed for seed maturation and viability. Plant Physiol 149:905–915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Skibbe D, Liu F, Wen TJ, Yandeau M, Cui X, Cao J, Simmons C, Schnable P (2002) Characterization of the aldehyde dehydrogenase gene families of Zea mays and Arabidopsis. Plant Mol Biol 48:751–764

    Article  CAS  PubMed  Google Scholar 

  • Sophos NA, Vasiliou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143–144:5–22

    Article  PubMed  Google Scholar 

  • Sung S-JS, Xu D-P, Galloway CM, Black CC (1988) A reassessment of glycolysis and gluconeogenesis in higher plants. Physiol Plant 72:650–654

    Article  CAS  Google Scholar 

  • Sunkar R, Bartels D, Kirch H-H (2003) Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J 35:452–464

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang W, Wong K, Lam Y-M, Cha S, Cheng CHK, Fong W (2008) The crystal structure of seabream antiquitin reveals the structural basis of its substrate specificity. FEBS Lett 582:3090–3096

    Article  CAS  PubMed  Google Scholar 

  • Toyokura K, Watanabe K, Oiwaka A, Kusano M, Tameshige T, Tatematsu K, Matsumoto N, Tsugeki R, Saito K, Okada K (2011) Succinic semialdehyde dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-abaxial axis. Plant Cell Physiol 52:1340–1353

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci 97:11632–11637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vasiliou V, Bairoch A, Tipton K, Nebert D (1999) Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics 9:421–434

    Article  CAS  PubMed  Google Scholar 

  • Vasiliou V, Pappa A, Petersen DR (2000) Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 129:1–19

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Liu D, Guo J, Leseberg CH, Zhang X, Mao L (2013) Functional divergence of two duplicated D-lineage MADS-box genes BdMADS2 and BdMADS4 from Brachypodium distachyon. J Plant Physiol 170:424–431

    Article  CAS  PubMed  Google Scholar 

  • Weretilnyk EA, Hanson AD (1990) Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought. Proc Natl Acad Sci 87:2745–2749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wymore T, Hempel J, Cho SS, MacKerell AD, Nicholas HB, Deerfield DW (2004) Molecular recognition of aldehydes by aldehyde dehydrogenase and mechanism of nucleophile activation. Proteins: Structure. Funct Bioinform 57:758–771

    Article  CAS  Google Scholar 

  • Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress-responsive gene expression by the LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Mori H, Yamaki S (1999) Identification and cDNA cloning of a protein abundantly expressed during apple fruit development. Plant Cell Physiol 40:198–204

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Yoshida A, Rzhetsky A, Hsu LC, Chang C (1998) Human aldehyde dehydrogenase gene family. Eur J Biochem 251:549–557

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Mao L, Wang H, Brocker C, Yin X, Vasiliou V, Fei Z, Wang X (2012) Genome-wide identification and analysis of grape aldehyde dehydrogenase (ALDH) gene superfamily. PLoS ONE 7:e32153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Z, Chen G, Zhang C (2001) Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol 28:1055–1061

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the expertise of Miss Shuang Fang and Dr. Jinfang Chu (National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China) in determining the ABA contents of the plant materials. We thank Professor Robert A. McIntosh (Plant Breeding Institute, University of Sydney, NSW, Australia) for revising the manuscript and constructive advice. The project was sponsored by National Natural Science Foundation of China (31101141) and National Key Technology R & D Program (2011BAD07B00).

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangqi Zhang.

Additional information

J. Chen and B. Wei contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2882 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wei, B., Li, G. et al. TraeALDH7B1-5A, encoding aldehyde dehydrogenase 7 in wheat, confers improved drought tolerance in Arabidopsis . Planta 242, 137–151 (2015). https://doi.org/10.1007/s00425-015-2290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2290-8

Keywords

Navigation