Skip to main content
Log in

Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC–MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30 % of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

iTRAQ:

Isobaric tag for relative and absolute quantification

LC:

Liquid chromatography

MS:

Mass spectrometry

References

  • Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120

    Article  CAS  PubMed  Google Scholar 

  • Al-Ghazi Y, Bourot S, Arioli T, Dennis ES, Llewellyn DJ (2009) Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol 50:1364–1381

    Article  CAS  PubMed  Google Scholar 

  • Amor Y, Haigler CH, Johnson S, Wainscott M, Delmer DP (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc Natl Acad Sci USA 92:9353–9357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Applequist WL, Cronn R, Wendel JF (2001) Comparative development of fiber in wild and cultivated cotton. Evol Dev 3:3–17

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Hu G, Flagel LE, Salmon A, Bezanilla M, Paterson AH, Wang Z, Wendel JF (2011) Parallel up-regulation of the profilin gene family following independent domestication of diploid and allopolyploid cotton (Gossypium). Proc Natl Acad Sci USA 108:21152–21157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Bevan M, Bancroft I, Bent E, Love K, Goodman H, Dean C, Bergkamp R, Dirkse W et al (1998) Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature 391:485–488

    Article  CAS  PubMed  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81:1309–1326

    Article  Google Scholar 

  • Burger JC, Chapman MA, Burke JM (2008) Molecular insights into the evolution of crop plants. Am J Bot 95:113–122

    Article  PubMed  Google Scholar 

  • Burke JM, Burger JC, Chapman MA (2007) Crop evolution: from genetics to genomics. Curr Opin Genet Dev 17:525–532

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Hovav R, Rapp R, Verma N, Udall JA, Wendel JF (2008) Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense. Evol Dev 10:567–582

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary B, Hovav R, Flagel L, Mittler R, Wendel JF (2009) Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium). BMC Genom 10:378

    Article  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    Article  CAS  PubMed  Google Scholar 

  • Chen A, He S, Li F, Li Z, Ding M, Liu Q, Rong J (2012) Analyses of the sucrose synthase gene family in cotton: structure, phylogeny and expression patterns. BMC Plant Biol 12:85

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chong PK, Gan CS, Pham TK, Wright PC (2006) Isobaric tags for relative and absolute quantitation (iTRAQ) reproducibility: implication of multiple injections. J Proteome Res 5:1232–1240

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of the species by means of natural selection: or, the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Diz AP, Martinez-Fernandez M, Rolan-Alvarez E (2012) Proteomics in evolutionary ecology: linking the genotype with the phenotype. Mol Ecol 21:1060–1080

    Article  CAS  PubMed  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan L, Shi WJ, Hu WR, Hao XY, Wang DM, Yuan H, Yan HY (2009) Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers. J Integr Plant Biol 51:626–637

    Article  CAS  PubMed  Google Scholar 

  • Fenselau C (2007) A review of quantitative methods for proteomic studies. J Chromatogr B Analyt Technol Biomed Life Sci 855:14–20

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1948) Questions and answers #14. Am Stat 2:30–31

    Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15:529–537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haigler CH, Betancur L, Stiff MR, Tuttle JR (2012) Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci 3:104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hovav R, Udall JA, Chaudhary B, Hovav E, Flagel L, Hu G, Wendel JF (2008) The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet 4:e25

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu G, Houston NL, Pathak D, Schmidt L, Thelen JJ, Wendel JF (2011) Genomically biased accumulation of seed storage proteins in allopolyploid cotton. Genetics 189:1103–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu G, Koh J, Yoo MJ, Grupp K, Chen S, Wendel JF (2013) Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. New Phytol 200:570–582

    Article  CAS  PubMed  Google Scholar 

  • Koh J, Chen S, Zhu N, Yu F, Soltis PS, Soltis DE (2012) Comparative proteomics of the recently and recurrently formed natural allopolyploid Tragopogon mirus (Asteraceae) and its parents. New Phytol 196:292–305

    Article  CAS  PubMed  Google Scholar 

  • Lemkin PF, Thornwall GC, Evans J (2005) Comparing 2-D electrophoretic gels across internet databases. In: Walker J (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 279–306

    Chapter  Google Scholar 

  • Li HB, Qin YM, Pang Y, Song WQ, Mei WQ, Zhu YX (2007) A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New Phytol 175:462–471

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Tu L, Wang L, Li Y, Zhu L, Zhang X (2008) Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Rep 27:1385–1394

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Han M, Zhang C, Yao L, Sun J, Zhang T (2012) Comparative proteomic analysis reveals the mechanisms governing cotton fiber differentiation and initiation. J Proteomics 75:845–856

    Article  CAS  PubMed  Google Scholar 

  • Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD (2010) PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res 38:D204–D210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen KM, Wendel JF (2013a) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM, Wendel JF (2013b) Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci 4:1–16

    Article  Google Scholar 

  • Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX (2010) Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 9:2019–2033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paterson AH (2005) Polyploidy, evolutionary opportunity, and crop adaptation. Genetics of adaptation. Genetica 123:191–196

    Article  CAS  PubMed  Google Scholar 

  • Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, Wendel JF (2010) Gene expression in developing fibres of Upland cotton (Gossypium hirsutum L.) was massively altered by domestication. BMC Biol 8:139

    Article  PubMed Central  PubMed  Google Scholar 

  • Rose JK, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT, Chourey PS (2005) The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. J Exp Bot 56:977–984

    Article  CAS  PubMed  Google Scholar 

  • Salnikov VV, Grimson MJ, Seagull RW, Haigler CH (2003) Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma 221:175–184

    CAS  PubMed  Google Scholar 

  • Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA (2007) The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6:1638–1655

    Article  CAS  PubMed  Google Scholar 

  • Stiff RM, Haigler HC (2012) Recent advances in cotton fiber development. In: Oosterhuis DM, Cothren JT (eds) Flowering and fruiting in cotton. The Cotton Foundation, Tennessee, pp 163–192

    Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Tu L, Deng F, Hu H, Nie Y, Zhang X (2013) A genetic and metabolic analysis revealed that cotton fiber cell development was retarded by flavonoid naringenin. Plant Physiol 162:86–95

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang WH, Shilov IV, Seymour SL (2008) Nonlinear fitting method for determining local false discovery rates from decoy database searches. J Proteome Res 7:3661–3667

    Article  CAS  PubMed  Google Scholar 

  • Thelen JJ, Peck SC (2007) Quantitative proteomics in plants: choices in abundance. Plant Cell 19:3339–3346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:S-3–S-14

    Article  Google Scholar 

  • Vercauteren FG, Arckens L, Quirion R (2007) Applications and current challenges of proteomic approaches, focusing on two-dimensional electrophoresis. Amino Acids 33:405–414

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Li X-R, Lian H, Ni D-A, He Y-k, Chen X-Y, Ruan Y-L (2010) Evidence that high activity of vacuolar invertase Is required for cotton fiber and arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol 154:744–756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendel JF (1989) New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA 86:4132–4136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Am J Bot 79:1291–1310

    Article  Google Scholar 

  • Wendel JF, Brubaker CL, Seelanan T (2010) The origin and evolution of Gossypium. In: Stewart JM, Oosterhuis DM, Heitholt JJ, Mauney JR (eds) Physiology of cotton. Springer, The Netherlands, pp 1–18

    Chapter  Google Scholar 

  • Wendel JF, Flagel LE, Adams KL (2012) Jeans, genes, and genomes: cotton as a model for studying polyploidy. In: Soltis PS, Soltis DE (eds) Polyploidy and genome evolution. Springer, Berlin, Heidelberg, pp 181–207

    Chapter  Google Scholar 

  • Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5:651–658

    Article  CAS  PubMed  Google Scholar 

  • Yang YW, Bian SM, Yao Y, Liu JY (2008) Comparative proteomic analysis provides new insights into the fiber elongating process in cotton. J Proteome Res 7:4623–4637

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Yang YW, Liu JY (2006) An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE. Electrophoresis 27:4559–4569

    Article  CAS  PubMed  Google Scholar 

  • Yoo MJ, Wendel JF (2014) Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 10:e1004073

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Yang YW, Zhang Y, Liu JY (2013) A high-confidence reference dataset of differentially expressed proteins in elongating cotton fiber cells. Proteomics 13:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Zhao PM, Wang LL, Han LB, Wang J, Yao Y, Wang HY, Du XM, Luo YM, Xia GX (2010) Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J Proteome Res 9:1076–1087

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Sun G, Sun Z, Tang Y, Wu Y (2014) Cotton proteomics for deciphering the mechanism of environment stress response and fiber development. J Proteomics 105:74–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kara Grupp and Anna Tuchin for help in tissue collection. We acknowledge the Protein and Proteomics Facility of the Iowa State University for technical assistance in 2-DE analysis. We acknowledge the Proteomics and Mass Spectrometry Facility of the University of Florida’s Interdisciplinary Center for Biotechnology Research for assistance in LC–MS/MS analysis. DP was supported by a training grant from Punjab Agricultural University, Ludhiana, India. The LC–MS/MS system was funded by National Institute of Health grant 1S10RR025418-01 to SC. This work was funded by Cotton Incorporated grant 09-558 and by the NSF Plant Genome Research Program, both to JFW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Wendel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, G., Koh, J., Yoo, MJ. et al. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). Planta 240, 1237–1251 (2014). https://doi.org/10.1007/s00425-014-2146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2146-7

Keywords

Profiles

  1. Guanjing Hu