Skip to main content
Log in

Expression of Chlorovirus MT325 aquaglyceroporin (aqpv1) in tobacco and its role in mitigating drought stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusions

A Chlorovirus aquaglyceroporin expressed in tobacco is localized to the plastid and plasma membranes. Transgenic events display improved response to water deficit. Necrosis in adult stage plants is observed.

Aquaglyceroporins are a subclass of the water channel aquaporin proteins (AQPs) that transport glycerol along with other small molecules transcellular in addition to water. In the studies communicated herein, we analyzed the expression of the aquaglyceroporin gene designated, aqpv1, from Chlorovirus MT325, in tobacco (Nicotiana tabacum), along with phenotypic changes induced by aqpv1 expression in planta. Interestingly, aqpv1 expression under control of either a constitutive or a root-preferred promoter, triggered local lesion formation in older leaves, which progressed significantly after induction of flowering. Fusion of aqpv1 with GFP suggests that the protein localized to the plasmalemma, and potentially with plastid and endoplasmic reticulum membranes. Physiological characterizations of transgenic plants during juvenile stage growth were monitored for potential mitigation to water dry-down (i.e., drought) and recovery. Phenotypic analyses on drought mimic/recovery of juvenile transgenic plants that expressed a functional aqpv1 transgene had higher photosynthetic rates, stomatal conductance, and water use efficiency, along with maximum carboxylation and electron transport rates when compared to control plants. These physiological attributes permitted the juvenile aqpv1 transgenic plants to perform better under drought-mimicked conditions and hastened recovery following re-watering. This drought mitigation effect is linked to the ability of the transgenic plants to maintain cell turgor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AQPs:

Aquaporins

AQPV1:

Aquaglyceroporin protein virus1

MIPs:

Major intrinsic proteins

ORF:

Open reading frame

A net :

Net photosynthesis (µmol m−2 s−1)

g s :

Stomatal conductance (mol m−2 s−1)

E :

Transpiration (mmol m−2 s−1)

PAR:

Photosynthetic active radiation (µmol m−2 s−1)

iWUE:

Instantaneous water use efficiency (µmol mol−1)

J max :

Maximum election transport rate (µmol m−2 s−1)

V cmax :

Maximum carboxylation efficiency (µmol m−2 s−1)

Fv/Fm:

Maximum photochemical efficiency of photosystem II

F o :

Minimal or dark-adapted chlorophyll fluorescence

F m :

Maximal fluorescence

F v :

Variable fluorescence

\({\Psi}_{{\Pi }}\) :

Osmotic potential (MPa)

Ψw :

Water potential (MPa)

NL:

Total number of leaves

DWTL :

Total leaf dry weight (g)

DWAG :

Above-ground dry weight (g)

LAt :

Total leaf area (cm2)

SLA:

Specific leaf area (cm2 g−1)

References

  • Aharon R, Shahak Y, Wininger S, Bendov R, Kapulnik Y, Galili G (2003) Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15:439–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient channels for metalloids. J Biol 7:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Bienert GP, Møller ALB, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Bihmidine S, Bryan NM, Payne KR, Parde KR, Okalebe JA, Cooperstein SE, Awada T (2010) Photosynthetic performance of invasive Pinus ponderosa and Juniperus virginiana seedlings under gradual soil water depletion. Plant Biol 12:668–675

    CAS  PubMed  Google Scholar 

  • Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590–1597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chrispeels MJ, Maurel C (1994) Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiol 105:9–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clemente T (2006) Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). Methods Mol Biol 343:143–154

    PubMed  Google Scholar 

  • Crowley MJ (2005) Statistics: an introduction using R. Wiley, England, pp 155–185

    Book  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Report 1:19–21

    Article  CAS  Google Scholar 

  • Eckert M, Biela A, Siefritz F, Kaldenhoff R (1999) New aspects of plant aquaporin regulation and specificity. J Exp Bot 50:1541–1545

    CAS  Google Scholar 

  • Eckert H, LaVallee B, Schweiger BJ, Kinney AJ, Cahoon EB, Clemente T (2006) Co-expression of the borage∆6 desaturase and the Arabidopsis15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224:1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models. Chapman & Hall/CRC, USA

    Google Scholar 

  • Gazzarrini S, Kang M, Epimashko S, Van Etten JL, Dainty J, Thiel G, Moroni A (2006) Chlorella virus MT325 encodes water and potassium channels that interact synergistically. Proc Natl Acad Sci USA 103:5355–5360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol 64:477–499

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Katsuhara M, Koshio K, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K (2003) Over-expression of a barley aquaporin increased the shoot/root ratio and raised salt sensitivity in transgenic rice plants. Plant Cell Physiol 44:1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Kuhn M, Weston S, Wing J, Forester J (2011) Contrast: a collection of contrasts methods. R package version 0.17. http://cran.r-project.org/package=contrast. Accessed 13 April 2012

  • Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Stutzel H (2003) Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci Hortic 102:15–27

    Article  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Luu D-T, Maurel C (2013) Aquaporin trafficking in plant cells: an emerging membrane-protein model. Traffic 14:629–635

    Article  CAS  PubMed  Google Scholar 

  • Maurel C, Chrispeels MJ (2001) Aquaporins. A molecular entry into plant water relations. Plant Physiol 125:135–138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Ann Rev Plant Biol 59:595–624

    Article  CAS  Google Scholar 

  • Mullineaux P (2009) ROS in retrograde signalling from chloroplast to the nucleus. In: del Río LA, Puppo A (eds) Reactive oxygen species in plant signaling, signaling and communication in plants. Springer, Berlin Heidelberg, pp 221–240

    Chapter  Google Scholar 

  • Nitz I, Berkefeld H, Puzio PS, Grundler FMW (2001) Pyk10, a seedling and root specific gene and promoter from Arabidopsis thaliana. Plant Sci 161:337–346

    Article  CAS  PubMed  Google Scholar 

  • Nobel PS (2009) Physiochemical and environmental plant physiology. Academic Press/Elsevier, San Diego

    Google Scholar 

  • Pang Y, Li L, Ren F, Lu P, Wei P, Cai J, Xin L, Zhang J, Chen J, Wang X (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729–740

    Article  CAS  PubMed  Google Scholar 

  • Prado K, Boursiac Y, Tournaire-Roux C, Monneuse J-M, Postaire O, Da Ines O, Schäffner AR, Hem S, Santoni V, Maurel C (2013) Regulation of Arabidopsis leaf hydraulics involves light-dependent phosphorylation of aquaporins in veins. Plant Cell 25:1029–1039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quigley F, Rosenberg JM, Shahar-Hill Y, Bonhert HJ (2001) From genome to function: the Arabidopsis aquaporins. Genome Biol 3:1–17

    Article  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaffner AR (1998) Aquaporin function, structure, and expression: are there more surprises to surface in water relations? Planta 204:131–139

    Article  CAS  PubMed  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Törnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694

    Article  PubMed  Google Scholar 

  • Tyerman SD, Niemietz CM, Bramley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ 25:173–194

    Article  CAS  PubMed  Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Etten JL, Dunigan DD (2012) Chloroviruses: not your everyday plant virus. Trends Plant Sci 17:1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168:1241–1248

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Baldocchi DD (2003) Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–877

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This investigation was supported in part by National Institutes of Health Grant GM32241 (JLVE) and grant P20-RR15635 from the COBRE program of the National Center for Research Resources (JLVE). Funds to support this study were also provided by the Nebraska Research Initiative through the University of Nebraska’s Center for Biotechnology. The authors would like to thank Christian Elowsky for the help with the confocal imaging, Dr. Mathew Giovanni for his assistance with the statistical analysis and Amy Hilske from Beadle Greenhouse Facility for care of plants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom E. Clemente.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihmidine, S., Cao, M., Kang, M. et al. Expression of Chlorovirus MT325 aquaglyceroporin (aqpv1) in tobacco and its role in mitigating drought stress. Planta 240, 209–221 (2014). https://doi.org/10.1007/s00425-014-2075-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2075-5

Keywords

Navigation