Skip to main content
Log in

Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Fructans can act as cryoprotectants and contribute to freezing tolerance in plant species, such as in members of the grass subfamily Pooideae that includes Triticeae species and forage grasses. To elucidate the relationship of freezing tolerance, carbohydrate composition and degree of polymerization (DP) of fructans, we generated transgenic plants in the model grass species Brachypodium distachyon that expressed cDNAs for sucrose:fructan 6-fructosyltransferases (6-SFTs) with different enzymatic properties: one cDNA encoded PpFT1 from timothy grass (Phleum pratense), an enzyme that produces high-DP levans; a second cDNA encoded wft1 from wheat (Triticum aestivum), an enzyme that produces low-DP levans. Transgenic lines expressing PpFT1 and wft1 showed retarded growth; this effect was particularly notable in the PpFT1 transgenic lines. When grown at 22 °C, both types of transgenic line showed little or no accumulation of fructans. However, after a cold treatment, wft1 transgenic plants accumulated fructans with DP = 3–40, whereas PpFT1 transgenic plants accumulated fructans with higher DPs (20 to the separation limit). The different compositions of the accumulated fructans in the two types of transgenic line were correlated with the differences in the enzymatic properties of the overexpressed 6-SFTs. Transgenic lines expressing PpFT1 accumulated greater amounts of mono- and disaccharides than wild type and wft1 expressing lines. Examination of leaf blades showed that after cold acclimation, PpFT1 overexpression increased tolerance to freezing; by contrast, the freezing tolerance of the wft1 expressing lines was the same as that of wild type plants. These results provide new insights into the relationship of the composition of water-soluble carbohydrates and the DP of fructans to freezing tolerance in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DP:

Degree of polymerization

DTT:

Dithiothreitol

FEH:

Fructan exohydrolase

1-FFT:

Fructan:fructan 1-fructosyltransferase

HPAEC-PAD:

High-performance anion-exchange chromatography with pulsed amperometric detection

HPLC:

High-performance liquid chromatography

LE:

Ligand exchange

RI:

Refractive index

SE:

Size exclusion

1-SST:

Sucrose:sucrose 1-fructosyltransferase

6-SFT:

Sucrose:fructan 6-fructosyltransferase

PFT:

Transgenic line expressing PpFT1

WFT:

Transgenic line expressing wft1

WT:

Wild type

References

  • Bie XM, Wang K, She MY, Du LP, Zhang SX, Li JR, Gao X, Lin ZS, Ye XG (2012) Combinational transformation of three wheat genes encoding fructan biosynthesis enzymes confers increased fructan content and tolerance to abiotic stresses in tobacco. Plant Cell Rep 31:2229–2238

    Article  CAS  PubMed  Google Scholar 

  • Bolouri-Moghaddam MR, Le Roy K, Xiang L, Rolland F, Van den Ende W (2010) Sugar signalling and antioxidant network connections in plant cells. FEBS J 277:2022–2037

    Article  CAS  PubMed  Google Scholar 

  • Bonnett G, Sims I, Simpson R, Cairns A (1997) Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol 136:11–17

    Article  CAS  Google Scholar 

  • Cacela C, Hincha DK (2006) Monosaccharide composition, chain length and linkage type influence the interactions of oligosaccharides with dry phosphatidylcholine membranes. BBA Biomembr 1758:680–691

    Article  CAS  Google Scholar 

  • Cairns AJ (2003) Fructan biosynthesis in transgenic plants. J Exp Bot 54:549–567

    Article  CAS  PubMed  Google Scholar 

  • Cairns A, Nash R, De Carvalho M, Sims I (1999) Characterization of the enzymatic polymerization of 2,6-linked fructan by leaf extracts from timothy grass (Phleum pratense). New Phytol 142:79–91

    Article  CAS  Google Scholar 

  • Carpita N, Kanabus J, Housley T (1989) Linkage structure of fructans and fructan oligomers from Triticum aestivum and Festuca arundinacea leaves. J Plant Physiol 134:162–168

    Article  CAS  Google Scholar 

  • Chatterton N, Harrison P (1997) Fructan oligomers in Poa ampla. New Phytol 136:3–10

    Article  CAS  Google Scholar 

  • Chatterton N, Harrison P, Thornley W, Bennett J (1993) Structures of fructan oligomers in orchardgrass (Dactylis glomerata L.). J Plant Physiol 142:552–556

    Article  CAS  Google Scholar 

  • Christensen AH, Quail PH (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

    Article  CAS  PubMed  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  Google Scholar 

  • Crowe JH, Oliver AE, Hoekstra FA, Crowe LM (1997) Stabilization of dry membranes by mixtures of hydroxyethyl starch and glucose: the role of vitrification. Cryobiology 35:20–30

    Article  CAS  PubMed  Google Scholar 

  • De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443

    Article  Google Scholar 

  • del Viso F, Casabuono AC, Couto AS, Hopp HE, Puebla AF, Heinz RA (2011) Functional characterization of a sucrose:fructan 6-fructosyltransferase of the cold-resistant grass Bromus pictus by heterologous expression in Pichia pastoris and Nicotiana tabacum and its involvement in freezing tolerance. J Plant Physiol 168:493–499

    Article  PubMed  Google Scholar 

  • Dionne J, Rochefort S, Huff DR, Desjardins Y, Bertrand A, Castonguay Y (2010) Variability for freezing tolerance among 42 ecotypes of green-type annual bluegrass. Crop Sci 50:321–336

    Article  Google Scholar 

  • Gaudet DA, Laroche A, Yoshida M (1999) Low temperature-wheat–fungal interactions: a carbohydrate connection. Physiol Plant 106:437–444

    Article  CAS  Google Scholar 

  • Hincha D, Livingston D, Premakumar R, Zuther E, Obel N, Cacela C, Heyer A (2007) Fructans from oat and rye: composition and effects on membrane stability during drying. BBA Biomembr 1768:1611–1619

    Article  CAS  Google Scholar 

  • Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T (2004) Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing. Plant Sci 167:861–868

    Article  CAS  Google Scholar 

  • Iizuka M, Yamaguchi H, Ono S, Minamiura N (1993) Production and isolation of levan by use of levansucrase immobilized on the ceramic support SM-10. Biosci Biotechnol Biochem 57:322–324

    Article  CAS  Google Scholar 

  • Kawakami A, Yoshida M (2002) Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose : fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotechnol Biochem 66:2297–2305

    Article  CAS  PubMed  Google Scholar 

  • Kawakami A, Yoshida M (2005) Fructan:fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 223:90–104

    Article  CAS  PubMed  Google Scholar 

  • Kawakami A, Sato Y, Yoshida M (2008) Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance. J Exp Bot 59:793–802

    Article  CAS  PubMed  Google Scholar 

  • Keunen E, Peshev D, Vangronsveld J, Van den Ende W, Cuypers A (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    Article  CAS  Google Scholar 

  • Li HJ, Yang AF, Zhang XC, Gao F, Zhang JR (2007) Improving freezing tolerance of transgenic tobacco expressing-sucrose: sucrose 1-fructosyltransferase gene from Lactuca sativa. Plant Cell Tiss Org 89:37–48

    Article  CAS  Google Scholar 

  • Li C, Rudi H, Stockinger EJ, Cheng H, Cao M, Fox SE, Mockler TC, Westereng B, Fjellheim S, Rognli OA, Sandve SR (2012) Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses. BMC Plant Biol 12:65

    Article  PubMed Central  PubMed  Google Scholar 

  • Livingston DP, Hincha DK, Heyer AG (2009) Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci 66:2007–2023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    Article  CAS  PubMed  Google Scholar 

  • Muguerza M, Gondo T, Yoshida M, Kawakami A, Terami F, Yamada T, Akashi R (2013) Modification of the total soluble sugar content of the C4 grass Paspalum notatum expressing the wheat-derived sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6-fructosyltransferase genes. Grassl Sci 59:196–204

    Google Scholar 

  • Opanowicz M, Vain P, Draper J, Parker D, Doonan JH (2008) Brachypodium distachyon: making hay with a wild grass. Trends Plant Sci 13:172–177

    Article  CAS  PubMed  Google Scholar 

  • Grotelueschen RD, Smith D (1968) Carbohydrates in grasses. III. Estimations of degree of polymerization of fructosans in stem bases of timothy and bromegrass near seed maturity. Crop Sci 8:210–212

    Article  CAS  Google Scholar 

  • Ritsema T, Hernandez L, Verhaar A, Altenbach D, Boller T, Wiemken A, Smeekens S (2006) Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J 48:228–237

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Kawakami A, Sanada Y, Tase K, Komatsu T, Yoshida M (2009) Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). J Exp Bot 60:893–905

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Sanada Y, Tase K, Komatsu T, Yoshida M (2011) Pp6-FEH1 encodes an enzyme for degradation of highly polymerized levan and is transcriptionally induced by defoliation in timothy (Phleum pratense L.). J Exp Bot 62:3421–3431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247

    Article  Google Scholar 

  • Van den Ende W, Valluru R (2009) Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J Exp Bot 60:9–18

    Article  PubMed  Google Scholar 

  • Vereyken I, Chupin V, Hoekstra F, Smeekens S, de Kruijff B (2003) The effect of fructan on membrane lipid organization and dynamics in the dry state. Biophys J 84:3759–3766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27:471–478

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Garvin DF, Mockler TC et al (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  CAS  Google Scholar 

  • Yoshida M, Tamura K (2011) Research on fructan in wheat and temperate forage grasses in Japan. Jpn Agric Res Q 45:9–14

    Article  Google Scholar 

  • Yoshida M, Abe J, Moriyama M, Kuwabara T (1998) Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. Physiol Plant 103:8–16

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. John Vogel, US Department of Agriculture, Agricultural Research Service, Dr. Ichiro Mitsuhara, National Institute of Agrobiological Sciences, Japan and Dr. Masaru Iizuka, Kobe Shoin Women’s University, Japan for providing seeds of ‘Bd21-3’ of Brachypodium distachyon, the pMLH7133 plasmid vector and 6-kestotriose, respectively. We thank Ms. Yukari Ikenobe and Satomi Shimada for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Tamura.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2013_2016_MOESM1_ESM.pptx

Suppl. Fig. S1 Anion exchange HPLC (HPAEC-PAD) analysis of water-soluble carbohydrates from the leaf blades of cold acclimated plants, treated with the recombinant Pp6-FEH1 enzyme. a Authentic standards. b, c Untreated and treated extracted solutions from fully expanded leaves of cold acclimated wild type plants. d, e Untreated and treated extracted solutions from a transgenic line expressing wft1, WFT1-20. f, g Untreated and treated extracted solutions from a transgenic line expressing PpFT1, PFT1-31. Chromatograms at the latter retention time are redrawn using an extended y axis scale (f and g). Abbreviations for each sugar peak are: G, glucose; F, fructose; S, sucrose; 1 K, 1-kestotriose; N, nystose

425_2013_2016_MOESM2_ESM.pptx

Suppl. Fig. S2 Low molecular parts of the anion exchange HPLC (HPAEC-PAD) analysis of water-soluble carbohydrates from the leaf blades of cold acclimated plants. a Authentic standards. b Wild type. c A transgenic line expressing wft1, WFT1-20. d A transgenic line expressing PpFT1, PFT1-31. Abbreviations for each sugar peak are: G, glucose; F, fructose; S, sucrose; 1 K, 1-kestotriose

425_2013_2016_MOESM3_ESM.pptx

Suppl. Fig. S3 HPLC chromatograms of water-soluble carbohydrates from the leaf blades of cold acclimated transgenic and wild type B. distachyon analyzed by the SE and LE separation mode with the RI detection. Extracted solutions from fully expanded leaves of cold acclimated wild type plants (a), plants from a transgenic line expressing wft1, WFT1-20 (b) and plants from a transgenic line expressing PpFT1, PFT1-31 (c) were analyzed. Abbreviations for each sugar peak are: G, glucose; F, fructose; S, sucrose; O, oligosaccharide; P, polysaccharide. The leftmost peak in each chromatogram does not show any sugars

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, Ki., Sanada, Y., Tase, K. et al. Comparative study of transgenic Brachypodium distachyon expressing sucrose:fructan 6-fructosyltransferases from wheat and timothy grass with different enzymatic properties. Planta 239, 783–792 (2014). https://doi.org/10.1007/s00425-013-2016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-2016-8

Keywords

Navigation