Skip to main content
Log in

Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Abscisic acid (ABA) plays a central role in seed dormancy and transcriptional regulation of genes coding for ABA biosynthetic and degradation enzymes is responsible for control of ABA content. However, little is known about signalling both before and after ABA regulation, in particular, how environmental signals are perceived and transduced. We are interested in these processes in cereal grains, particularly in relation to the development of strategies for controlling pre-harvest sprouting in barley and wheat. Our previous studies have indicated possible components of dormancy control and here we present evidence that blue light, nitric oxide (NO) and jasmonate are major controlling elements in wheat grain. Using microarray and pharmacological studies, we have found that blue light inhibits germination in dormant grain and that methyl jasmonate (MJ) and NO counteract this effect by reducing dormancy. We also present evidence that NO and jasmonate play roles in dormancy control in vivo. ABA was reduced by MJ and this was accompanied by reduced levels of expression of TaNCED1 and increased expression of TaABA8′OH-1 compared with dormant grain. Similar changes were caused by after-ripening. Analysis of global gene expression showed that although jasmonate and after-ripening caused important changes in gene expression, the changes were very different. While breaking dormancy, MJ had only a small number of target genes including gene(s) encoding beta-glucosidase. Our evidence indicates that NO and MJ act interdependently in controlling reduction of ABA and thus the demise of dormancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

D:

Dormant

AR:

After-ripened

MJ:

Methyl jasmonate

NO:

Nitric oxide

JA:

Jasmonic acid

ASA:

Acetylsalicylic acid

CE:

Coleorhiza emergence

RE:

Root emergence

SNP:

Sodium nitroprusside

AOS:

Allene oxide synthase

OPR:

12-oxophytodienoic acid reductase

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide

References

  • Barrero JM, Talbot MJ, White RG, Jacobsen JV, Gubler F (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150:1006–1021

    Article  PubMed  CAS  Google Scholar 

  • Barrero JM, Jacobsen JV, Talbot M, White R, Swain M, Garvin D, Gubler F (2011) Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol 193:376–386

    Article  PubMed  Google Scholar 

  • Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Beligni M, Lamattina L (2000) Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210:215–221

    Article  PubMed  CAS  Google Scholar 

  • Berestetsky V, Dathe W, Daletskaya T, Musatenko L, Sembdner G (1991) Jasmonic acid in seed dormancy of Acer tataricum. Biochem Physiol Pflanzen 187:13–19

    Google Scholar 

  • Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signalling in plants. Annu Rev Plant Biol 59:21–39

    Article  PubMed  CAS  Google Scholar 

  • Bethke P, Gubler F, Jacobsen J, Jones R (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  PubMed  CAS  Google Scholar 

  • Bethke P, Libourel I, Jones R (2005) Nitric oxide reduces dormancy in Arabidopsis. J Exp Bot 57:517–526

    Article  PubMed  Google Scholar 

  • Bethke P, Libourel I, Reinohl V, Jones R (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate break Arabidopsis seed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  PubMed  CAS  Google Scholar 

  • Bewley D (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bewley D, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York

    Google Scholar 

  • Birkenbihl R, Diezel C, Somssich I (2012) Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic responses toward Botrytis cinerea infection. Plant Physiol 159:266–285

    Article  PubMed  CAS  Google Scholar 

  • Bliss D, Smith H (1985) Penetration of light into soil and its role in the control of seed germination. Plant Cell Environ 8:475–483

    Article  Google Scholar 

  • Bogatek R, Gniazdowska A (2006) Nitric oxide and HCN reduce deep dormancy of apple seeds. Acta Physiol Plant 28:281–287

    Article  Google Scholar 

  • Borovskii G, Stupnikova I, Antipina A, Vladimirova S, Voinikov V (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2:5–11

    Article  PubMed  Google Scholar 

  • Browse J (2009) Jasmonate passes muster: a receptor and targets for the defence hormone. Annu Rev Plant Biol 60:183–205

    Article  PubMed  CAS  Google Scholar 

  • Burger W (1965) Effect of light on the germination of barley and its relation to dormancy. J Inst Brew 71:244–250

    Article  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chaussat R, Zoppolo J (1983) Lumiere et germination de l’orge. Bios 14:30–32

    Google Scholar 

  • Cheong J, Choi Y (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    Article  PubMed  CAS  Google Scholar 

  • Chono M, Hondo I, Shinoda S, Kushiro T, Kamiya Y, Nambara E, Kawakami N, Kaneko S, Watanabe Y (2006) Field studies in the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J Exp Bot 57:2421–2434

    Article  PubMed  CAS  Google Scholar 

  • Corbineau F, Benamar A, Come D (2000) Changes in sensitivity to abscisic acid of the developing and maturing embryo of two wheat cultivars with different sprouting susceptibility. Israel J Plant Sci 48:189–197

    Article  CAS  Google Scholar 

  • Creelman R, Mullet J (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • Creelman R, Mullet J (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Cumming B, Hay J (1958) Light and dormancy in wild oats (Avena fatua L.). Nature 182:609–610

    Article  Google Scholar 

  • Daletskaya T, Sembdner G (1989) Effect of jasmonic acid on germination of nondormant and dormant seeds (in Russian). Fiziol Rast 36:1118–1123

    CAS  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396

    Article  PubMed  CAS  Google Scholar 

  • Derkx M, Karssen C (1993) Variability in light, gibberellin and nitrate requirement of Arabidopsis thaliana seeds due to harvest time and conditions of dry storage. J Plant Physiol 141:574–582

    Article  CAS  Google Scholar 

  • Falkenstein E, Groth B, Mithofer A, Weiler E (1991) Methyl jasmonate and linolenic acid are potent inducers of tendril coiling. Planta 185:316–322

    Article  CAS  Google Scholar 

  • Farmer E, Ryan C (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87:7713–7716

    Article  PubMed  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  PubMed  CAS  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nature Chem Biol 5:344–350

    Article  CAS  Google Scholar 

  • Gallardo K, Job C, Groot S, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed  Google Scholar 

  • Gfeller A, Baerenfaller K, Loscos J, Chetelat A, Baginsky S, Farmer E (2011) Jasmonate controls polypeptide patterning in undamaged tissue in wounded Arabidopsis leaves. Plant Physiol 156:1797–1807

    Article  PubMed  CAS  Google Scholar 

  • Gniazdowska A, Dobrznska U, Babanczyk T, Bogatek R (2007) Breaking of apple embryo dormancy by nitric oxide involves stimulation of ethylene production. Planta 225:1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Goggin D, Steadman K, Powles S (2008) Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds. New Phytol 148:81–89

    Article  Google Scholar 

  • Graham I (2008) Seed storage oil mobilization. Annu Rev Plant Biol 59:115–142

    Article  PubMed  CAS  Google Scholar 

  • Grahl A, Thielebein M (1959) Einfluss von Licht auf die Keimung der Gerste. Naturwissenschaften 46:336–337

    CAS  Google Scholar 

  • Green T, Ryan C (1972) Wound-induced proteinase inhibitor in plant leaves: a possible defense mechanism against insects. Science 175:776–777

    Article  PubMed  CAS  Google Scholar 

  • Groot S, Kieliszewska-Rokicka B, Vermeer E, Karssen C (1988) Gibberellin-induced hydrolysis of endosperm cell walls in gibberellin-deficient tomato seeds prior to radicle protrusion. Planta 174:500–504

    Article  CAS  Google Scholar 

  • Gubler F, Millar A, Jacobsen J (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  PubMed  CAS  Google Scholar 

  • Gubler F, Hughes T, Waterhouse P, Jacobsen J (2008) Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol 147:886–896

    Article  PubMed  CAS  Google Scholar 

  • Gupta K, Fernie A, Kaiser W, van Dongen J (2011) On the origins of nitric oxide. Trends Plant Sci 16:160–168

    Article  PubMed  CAS  Google Scholar 

  • Howe G (2010) The roles of hormones in the defense against insects and disease. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action. Springer, Dordrecht, pp 646–680

    Google Scholar 

  • Jarvis S, Taylor M, Bianco J, Corbineau F, Davies H (1997) Dormancy-breakage in seeds of Douglas fir (Pseudotsuga menziesii (Mirb. Franco). Support for the hypothesis that LEA gene expression is essential for this purpose. J Plant Physiol 151:457–464

    Article  CAS  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    Article  PubMed  CAS  Google Scholar 

  • Krock B, Schmidt B, Hertweck C, Baldwin I (2002) Vegetation-derived abscisic acid and four terpenes enforce dormancy in seed of the post-fire annual Nicotiana attenuata. Seed Sci Res 12:239–252

    Article  CAS  Google Scholar 

  • Kucera B, Cohn M, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307

    Article  CAS  Google Scholar 

  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  PubMed  CAS  Google Scholar 

  • Leon-Reyes A, Does D, Lange E, Delker C, Wasternack C, Wees S, Ritsema T, Pieterse C (2010) Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway. Planta 232:1423–1432

    Article  PubMed  CAS  Google Scholar 

  • Linkes A, Leubner-Metzger G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31:253–270

    Article  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  PubMed  CAS  Google Scholar 

  • Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou J-P, Kamiya Y, Nambara E, Truong H-N (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  PubMed  CAS  Google Scholar 

  • Millar A, Jacobsen J, Ross J, Helliwell C, Poole A, Scofield G, Reid J, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954

    Article  PubMed  CAS  Google Scholar 

  • Mo B, Bewley J (2003) The relationship between beta-mannosidase and endo-beta-mannanase activities in tomato seeds during and following germination: a comparison of seed populations and individual seeds. J Exp Bot 54:2503–2510

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, Lindermayer C, Durner J, Klessig D (2010) NO synthesis and signalling in plants—where do we stand? Physiol Plant 138:372–383

    Article  PubMed  CAS  Google Scholar 

  • Morohashi Y (2002) Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J Exp Bot 53:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Sci Res 20:55–67

    Article  CAS  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS, Chen SY (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156–1170

    Article  PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva E, Welin B (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Pena-Cortes H, Albrecht T, Prat S, Weiler E, Willmitzer L (1993) ASA prevents wound-induced expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128

    Article  CAS  Google Scholar 

  • Pena-Cortes H, Fisahn J, Willmitzer L (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA 92:4106–4113

    Article  PubMed  CAS  Google Scholar 

  • Percival J (1921) The wheat plant: A monograph. Duckworth, London

    Book  Google Scholar 

  • Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E (2009) Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol 50:1786–1800

    Article  PubMed  CAS  Google Scholar 

  • Ranjan R, Lewak S (1992) Jasmonic acid promotes germination and lipase activity in non-stratified apple embryos. Physiol Plant 86:335–339

    Article  CAS  Google Scholar 

  • Rushton D, Tripathi P, Rabara R, Lin J, Ringler P, Boken A, Langum T, Smidt L, Boomsma D, Emme N, Chen X, Finer J, Shen Q, Rushton P (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotech J 10:2–11

    Article  CAS  Google Scholar 

  • Sarath G, Bethke P, Jones R, Baird L, Hou G, Mitchell R (2006) Nitric oxide accelerates seed germination in warm-season grasses. Planta 223:1154–1164

    Article  PubMed  CAS  Google Scholar 

  • Sarath G, Hou G, Baird L, Mitchell R (2007) Reactive oxygen species, ABA and nitric oxide interactions on the germination of warm-season grasses. Planta 226:697–708

    Article  PubMed  CAS  Google Scholar 

  • Schuurink R, van Beckum J, Heidekamp F (1992) Modulation of grain dormancy in barley by variation of plant growth conditions. Hereditas 117:137–143

    Article  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and the physiology and molecular actions of jasmonates. Annu Rev Plant Physiol Mol Biol 44:569–589

    Article  CAS  Google Scholar 

  • Sembdner G, Meyer A, Miersch O, Bruchner C (1990) Metabolism of jasmonic acid. In: Pharis RP, Rood SB (eds) Plant growth substances (1988). Springer, Berlin-Heidelberg, pp 374–379

    Chapter  Google Scholar 

  • Simpson G (1990) Seed dormancy in grasses. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Smyth G (2005) Limma: Linear models for microarray data. Bioinformatics and computational biology solution using R and bioconductor. Book Series, Stat Biol Health, pp 397–420

    Google Scholar 

  • Snowden K, Richards K, Gardner R (1995) Aluminium-induced genes. Plant Physiol 107:341–348

    PubMed  CAS  Google Scholar 

  • Staswick P, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Stohr C, Strube F, Marx G, Ullrich W, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841

    Article  PubMed  CAS  Google Scholar 

  • Walker-Simmonds M (1987) ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol 84:61–66

    Article  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. AnnBot (Lond.) 100:681–697

    Article  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucl Acid Res 72:165–221

    Article  CAS  Google Scholar 

  • Xu X, Chen C, Fan B, Chen Z (2006) Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310–1326

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468:89–92

    Article  PubMed  CAS  Google Scholar 

  • Yildiz K, Yazici C, Muradoglu F (2007) Effect of jasmonic acid on germination of dormant and non-dormant apple seeds. Asian J Chem 19:1098–1102

    CAS  Google Scholar 

  • Yildiz K, Muradoglu F, Yilmaz H (2008) The effect of jasmonic acid on germination of dormant and non-dormant pear (Pyrus communis) seeds. Seed Sci Technol 36:569–574

    Google Scholar 

Download references

Acknowledgments

JMB acknowledges the support of the Australian Grains Research and Development Corporation and MJ acknowledges the award of a STUNT Grant for Master Students by the University of Amsterdam in support of her MSc internship in Canberra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Barrero.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, J.V., Barrero, J.M., Hughes, T. et al. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). Planta 238, 121–138 (2013). https://doi.org/10.1007/s00425-013-1878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1878-0

Keywords

Navigation