Skip to main content
Log in

Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phenylalanine ammonia-lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway, and therefore plays a key role in both plant development and stress defense. In many plants, PAL is encoded by a multi-gene family, and each member is differentially regulated in response to environmental stimuli. In the present study, we report that PAL in cucumber (Cucumis sativus L.) is encoded for by a family of seven genes (designated as CsPAL1-7). All seven CsPALs are arranged in tandem in two duplication blocks, which are located on chromosomes 4 and 6, respectively. The cDNA and protein sequences of the CsPALs share an overall high identity to each other. Homology modeling reveals similarities in their protein structures, besides several slight differences, implying the different activities in conversion of phenylalanine. Phylogenic analysis places CsPAL1-7 in a separate cluster rather than clustering with other plant PALs. Analyses of expression profiles in different cucumber tissues or in response to various stress or plant hormone treatments indicate that CsPAL1-7 play redundant, but divergent roles in cucumber development and stress response. This is consistent with our finding that CsPALs possess overlapping but different cis-elements in their promoter regions. Finally, several duplication events are discussed to explain the evolution of the cucumber PAL genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABRE:

ABA responsive element

CRT:

C-rich repeat

ERE:

Ethylene responsive element

EST:

Expression sequence tag

GA:

Gibberellin

GARE:

GA responsive element

HSE:

Heat shock responsive element

LTRE:

Low temperature responsive element

MIO:

4-methylidene-imidazolone-5-one

ORF:

Open reading frame

PAL:

Phenylalanine ammonia-lyase

RT-PCR:

Reverse transcription-polymerase chain reaction

SA:

Salicylic acid

SARE:

SA responsive element

UTR:

Untranslated region

References

  • Abe M, Takahashi T, Komeda Y (2001) Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. Plant J 26:487–494

    Article  PubMed  CAS  Google Scholar 

  • Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643

    Article  PubMed  CAS  Google Scholar 

  • Achaz G, Coissac E, Viari A, Netter P (2000) Analysis of intrachromosomal repeats in yeast Saccharomyces cerevisiae: a possible model for their origin. Mol Biol Evol 17:1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Allwood EG, Davies DR, Gerrish C, Ellis BE, Bolwell GP (1999) Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett 457:47–52

    Article  PubMed  CAS  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E (2007) Tomato genome sequencing: deciphering the euchromatin region of the chromosome 8. Plant Biotechnol 24:5–9

    Article  CAS  Google Scholar 

  • Bedon F, Grima-Pettenati J, Mackay J (2007) Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca). BMC Plant Biol 7:17

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  Google Scholar 

  • Chang A, Lim MH, Lee SW, Robb EJ, Nazar RN (2008) Tomato phenylalanine ammonia-lyase gene family, highly redundant but strongly underutilized. J Biol Chem 283:33591–33601

    Article  PubMed  CAS  Google Scholar 

  • Chen JY, Wen PF, Kong WF, Pan QH, Zhan JC, Li JM, Wan SB, Huang WD (2006) Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biol Technol 40:64–72

    Article  CAS  Google Scholar 

  • Chen Z, Ricigliano JW, Klessig DF (1993) Purification and characterization of a soluble salicylic acid-binding protein from tobacco. Proc Natl Acad Sci USA 90:9533–9537

    Article  PubMed  CAS  Google Scholar 

  • Cramer CL, Edwards K, Dron M, Liang X, Dildine SL, Bolwell GP, Dixon RA, Lamb CJ, Schuch W (1989) Phenylalanine ammonia-lyase gene organization and structure. Plant Mol Biol 12:67–383

    Article  Google Scholar 

  • Cools HJ, Ishii H (2002) Pre-treatment of cucumber plants with acibenzolar-S-methyl systemically primes a phenylalanine ammonia lyase gene (PAL1) for enhanced expression upon attack with a pathogenic fungus. Physiol Mol Plant Pathol 61:273–280

    Article  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defense—a genomics perspective. Mol Plant Pathol 3:371–390

    Article  PubMed  CAS  Google Scholar 

  • Dong CJ, Wang XL, Shang QM (2011) Salicylic acid regulates carbohydrate metabolism that confers tolerance to salinity stress in cucumber seedlings. Sci Hortic 129:629–636

    Article  CAS  Google Scholar 

  • Edwards R, Kessmann H (1992) Isoflavonoid phytoalexins and their biosynthetic enzymes. In: Gurr SJ, McPherson MJ, Bowles DJ (eds) Molecular plant pathology: a practical approach. Oxford, Ohio, pp 45–62

    Google Scholar 

  • Elkind Y, Edwards R, Mavandad M, Hedrick SA, Ribak O, Dixon RA, Lamb CJ (1990) Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene. Proc Natl Acad Sci USA 87:9057–9061

    Article  PubMed  CAS  Google Scholar 

  • Emanuel BS, Shaikh TH (2001) Segmental duplications: an ‘expanding’ role in genomic instability and disease. Nat Rev Genet 2:791–800

    Article  PubMed  CAS  Google Scholar 

  • Fraser CM, Chapple C (2011) The phenylpropanoid pathway in Arabidopsis. Arabidopsis Book 9:e0152

    PubMed  Google Scholar 

  • Fukasawa-Akada T, Kung SD, Watson JC (1996) Phenylalanine ammonia-lyase gene structure, expression, and evolution in Nicotiana. Plant Mol Biol 30:711–722

    Article  PubMed  CAS  Google Scholar 

  • Goldsborough AP, Albrecht H, Stratford R (1993) Salicylic acid-inducible binding of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563–571

    Article  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Wang MH (2009) Characterization of the phenylalanine ammonia-lyase gene (SlPAL5) from tomato (Solanum lycopersicum L.). Mol Biol Rep 36:1579–1585

    Article  PubMed  CAS  Google Scholar 

  • Gurley WB, Czarnecka E, Key JL, Nagao RT (1986) Upstream sequences required for efficient expression of a soybean heat shock gene. Mol Cell Biol 6:559–565

    PubMed  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    PubMed  CAS  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  PubMed  CAS  Google Scholar 

  • Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, Ni PX, Ren YY, Zhu HM, Li J, Lin K, Jin WW et al (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41:1275–1281

    Article  PubMed  CAS  Google Scholar 

  • Jiang YM, Joyce DC (2003) ABA effects on ethylene production, PAL activity, anthocyanin and phenolic contents of strawberry fruit. Plant Growth Regul 39:171–174

    Article  Google Scholar 

  • Joos HJ, Hahlbrock K (1992) Phenylalanine ammonia-lyase in potato (Solanum tuberosum L.). Eur J Biochem 204:621–629

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Ellis BE (2001) The Phenylalanine ammonia-lyase gene family in raspberry: structure, expression, and evolution. Plant Physiol 127:230–239

    Article  PubMed  CAS  Google Scholar 

  • Lacombe E, Van Doorsselaere J, Boerjan W, Boudet AM, Grima-Pettenati J (2000) Characterization of cis-elements required for vascular expression of the Cinnamoyl CoA Reductase gene and for protein-DNA complex formation. Plant J 23:663–676

    Article  PubMed  CAS  Google Scholar 

  • Liang X, Dron M, Cramer CL, Dixon RA, Lamb CJ (1989) Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues. J Biol Chem 264:14486–14492

    PubMed  CAS  Google Scholar 

  • Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genomics 12:471

    Article  PubMed  CAS  Google Scholar 

  • Mizutani M, Ohta D, Sato R (1997) Isolation of a cDNA and a genomic clone encoding cinnamate 4-hydroxylase from Arabidopsis and its expression manner in planta. Plant Physiol 113:755–763

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60:51–68

    Article  PubMed  CAS  Google Scholar 

  • Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C (2008) Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. J Plant Physiol 165:1491–1499

    Article  PubMed  CAS  Google Scholar 

  • Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB (1997) Influence of salicylic acid on H2O2 production, oxidative stress and H2O2-metabolizing enzymes: salicylic acid-mediated oxidative damage requires H2O2. Plant Physiol 115:137–149

    Article  PubMed  CAS  Google Scholar 

  • Reams AB, Neidle EL (2004) Selection for gene clustering by tandem duplication. Annu Rev Microbiol 58:119–142

    Article  PubMed  CAS  Google Scholar 

  • Reichert AI, He XZ, Dixon RA (2009) Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes. Biochem J 424:233–242

    Article  PubMed  CAS  Google Scholar 

  • Ritter H, Schulz GE (2004) Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Plant Cell 16:3426–3436

    Article  PubMed  CAS  Google Scholar 

  • Rohde A, Morreel K, Ralph J, Goeminne G, Hostyn V, De Rycke R, Kushnir S, Van Doorsselaere J, Joseleau JP, Vuylsteke M, Van Driessche G, Van Beeumen J, Messens E, Boerjan W (2004) Molecular phenotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell 16:2749–2771

    Article  PubMed  CAS  Google Scholar 

  • Rushton PJ, Reinstädler A, Lipka V, Lippok B, Somssich IE (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Tapia G, Verdugo I, Yanez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzalez E, Ruiz-Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1 retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138:2075–2086

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analyses tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Ulker B, Somssich IE (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 7:491–498

    Article  PubMed  Google Scholar 

  • Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257

    Article  PubMed  CAS  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    PubMed  CAS  Google Scholar 

  • Xue GP (2002) Characterisation of the DNA-binding profile of barley HvCBF1 using an enzymatic method for rapid, quantitative and high-throughput analysis of the DNA-binding activity. Nucleic Acids Res 30:e77

    Article  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of our laboratory for their helpful advice and discussions. This work is supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 31101548) and International Science and Technology Cooperation Program of China (2010DFB30550). This work is also supported by the earmarked fund for China Agriculture Research System (CARS-25-C-13), and Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Juan Dong.

Additional information

Q.-M. Shang and L. Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shang, QM., Li, L. & Dong, CJ. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.. Planta 236, 1093–1105 (2012). https://doi.org/10.1007/s00425-012-1659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1659-1

Keywords

Navigation