Skip to main content
Log in

Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The xanthophylls of the light-harvesting complexes of photosystem II (LHCII), zeaxanthin, and lutein are thought to be essential for non-photochemical quenching (NPQ). NPQ is a process of photoprotective energy dissipation in photosystem II (PSII). The major rapidly reversible component of NPQ, qE, is activated by the transmembrane proton gradient, and involves the quenching of antenna chlorophyll excited states by the xanthophylls lutein and zeaxanthin. Using diaminodurene (DAD), a mediator of cyclic electron flow around photosystem I, to enhance ΔpH we demonstrate that qE can still be formed in the absence of lutein and light-induced formation of zeaxanthin in chloroplasts derived from the normally qE-deficient lut2npq1 mutant of Arabidopsis. The qE induced by high ΔpH in lut2npq1 chloroplasts quenched the level of fluorescence when all PSII reaction centers were in the open state (F o state), protected PSII reaction centers from photoinhibition, was sensitive to the uncoupler nigericin, and was accompanied by absorption changes in the 410–565 nm region. Titrations show the ΔpH threshold for activation of qE in lut2npq1 chloroplasts lies outside the normal physiological range and is highly cooperative. Comparison of quenching in isolated trimeric (LHCII) and monomeric (CP26) light-harvesting complexes from lut2npq1 plants revealed a similarly shifted pH dependency compared with wild-type LHCII. The implications for the roles of lutein and zeaxanthin as direct quenchers of excitation energy are discussed. Furthermore, we argue that the control over the proton-antenna association constant, pK, occurs via influence of xanthophyll structure on the interconnected phenomena of light-harvesting antenna reorganization/aggregation and hydrophobicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PSI:

Photosystem I

PSII:

Photosystem II

LHCII:

Light-harvesting antenna complex of photosystem II

CP26:

Minor PSII light-harvesting complex

ΔpH:

Proton gradient across the thylakoid membrane

NPQ:

Nonphotochemical chlorophyll fluorescence quenching

qE:

ΔpH-dependent portion of NPQ

(z):

Wild-type zeaxanthin containing chloroplasts

(v):

Wild-type chloroplasts containing no zeaxanthin

pK :

Proton antenna association constant

LEDs:

Light-emitting diodes

F o :

Maximum chlorophyll fluorescence in when all PSII reaction centers are open, 9-aa, 9-aminoacridine

DAD:

Diaminodurene

CEF:

Cyclic electron flow

References

  • Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797

    Article  PubMed  CAS  Google Scholar 

  • Amesz J, Fork DC (1967) Quenching of chlorophyll fluorescence by quinones in algae and chloroplasts. Biochim Biophys Acta 143:97–107

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1996) Radical production and scavenging in the chloroplasts. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 123–150

    Google Scholar 

  • Ballottari M, Girardon J, Betterle N, Morosinotto T, Bassi R (2010) Identification of the chromophores involved in aggregation-dependent energy quenching of the monomeric photosystem II antenna protein Lhcb5. J Biol Chem 285:28309–28321

    Article  PubMed  CAS  Google Scholar 

  • Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266

    Article  PubMed  CAS  Google Scholar 

  • Bode S, Quentmeier CC, Liao PN, Hafi N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316

    Article  PubMed  CAS  Google Scholar 

  • Crouchman S, Ruban AV, Horton P (2006) PsbS enhances nonphotochemical fluorescence quenching in the absence of zeaxanthin. FEBS Lett 580:2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Dall’Osto L, Caffarri S, Bassi R (2005) A mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. Plant Cell 17:1217–1232

    Article  PubMed  Google Scholar 

  • Hauska GA, Prince RC (1974) Lipophilicity and catalysis of photophosphorylation. FEBS Lett 41:35–39

    Article  PubMed  CAS  Google Scholar 

  • Havaux M, Dall’Osto L, Cuine S, Giuliano G, Bassi R (2004) The effect of zeaxanthin as the only Xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J Biol Chem 279:13878–13888

    Article  PubMed  CAS  Google Scholar 

  • Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plants. Biochemistry 43:8281–8289

    Article  PubMed  CAS  Google Scholar 

  • Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV, Rees D, Pascal AA, Noctor G, Young AJ (1991) Control of the light-harvesting function of chloroplast membranes by aggregation of the LHCII chlorophyll protein complex. FEBS Lett 292:1–4

    Article  PubMed  CAS  Google Scholar 

  • Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:665–684

    Article  Google Scholar 

  • Horton P, Johnson MP, Perez-Bueno ML, Kiss AZ, Ruban AV (2008) Does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states? FEBS J 275:1069–1079

    Article  PubMed  CAS  Google Scholar 

  • Ilioaia C, Johnson MP, Duffy CDP, Pascal AA, van Grondelle R, Robert B, Ruban AV (2011) The origin of the absorption changes associated with the photoprotective energy dissipation in the absence of zeaxanthin. J Biol Chem 286:91–98

    Article  PubMed  CAS  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. Biochim Biophys Acta 1787:3–14

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll in LHCII. J Biol Chem 284:23592–23601

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Ruban AV (2011) Restoration of rapidly-reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. J Biol Chem 286:19973–19981

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Havaux M, Triantaphylides C, Ksas B, Pascal AA, Robert B, Davison PA, Ruban AV, Horton P (2007) Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of Arabidopsis to photo-oxidative stress by a lipid protective, anti-oxidant mechanism. J Biol Chem 282:22605–22618

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Perez-Bueno ML, Zia A, Horton P, Ruban AV (2009) The zeaxanthin-independent and zeaxanthin-dependent qE components of nonphotochemical quenching involve common conformational changes within the photosystem II antenna in Arabidopsis. Plant Physiol 149:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Zia A, Horton P, Ruban AV (2010) Effect of xanthophyll composition on the chlorophyll excited state lifetime in plant leaves and isolated LHCII. Chem Phys 373:23–32

    Article  CAS  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of higher plant chloroplasts. Plant Cell 23:1468–1479

    Article  PubMed  CAS  Google Scholar 

  • Kramer DM, Sacksteder CM, Cruz JA (1999) How acidic is the lumen? Photosynth Res 60:151–163

    Article  CAS  Google Scholar 

  • Krüger TPJ, Ilioaia C, Valkunas L, van Grondelle R (2011) Fluorescence intermittency from the main plant light-harvesting complex: sensitivity to the local environment. J Phys Chem B 115:5083–5095

    Article  PubMed  Google Scholar 

  • Ledford HK, Niyogi KK (2005) Singlet oxygen and photo-oxidative stress management in plants and algae. Plant Cell Environ 28:1037–1045

    Article  CAS  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2004a) The determinants of carboxyl pK(a) values in Turkey ovomucoid third domain. Proteins 55:689–704

    Article  PubMed  CAS  Google Scholar 

  • Li XP, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004b) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ahn TK, Avenson TJ, Ballotarri M, Cruz JA, Kramer D, Bassi R, Fleming GR, Keasling JD, Niyogi KK (2009) Lutein accumulation in the absence of zeaxanthin restores nonphotochemical quenching in the Arabidopsis thaliana npq1 mutant. Plant Cell 21:1798–1812

    Article  PubMed  CAS  Google Scholar 

  • Liao PN, Holleboom CP, Wilk L, Kühlbrandt W, Walla PJ (2010) Correlation of Car S1 → Chl with Chl → Car S1 energy transfer supports the excitonic model in quenched light harvesting complex II. J Phys Chem B 114:15650–15655

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light harvesting complex at 2.72 Å resolution. Nature 428:287–291

    Article  PubMed  CAS  Google Scholar 

  • Lokstein H, Tian L, Polle JEW, DellaPenna D (2002) Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in photosystem II antenna size and stability. Biochim Biophys Acta 1553:309–319

    Article  PubMed  CAS  Google Scholar 

  • Ma YZ, Holt NE, Li XP, Niyogi KK, Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100:4377–4382

    Article  PubMed  CAS  Google Scholar 

  • Mehler EL, Fuxreiter M, Simon I, Garcia-Moreno EB (2002) The role of hydrophobic microenvironments in modulating pKa shifts in proteins. Proteins Struc Funct Genet 48:283–292

    Article  CAS  Google Scholar 

  • Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631

    Article  PubMed  CAS  Google Scholar 

  • Müller M, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chem Phys Chem 11:1289–1296

    Article  PubMed  Google Scholar 

  • Niyogi KK, Grossman AR, Bjorkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK, Shih C, Chow WS, Pogson BJ, Dellapenna D, Björkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Ruban AV, Horton P (1993) Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach-chloroplasts. Biochim Biophys Acta 1183:339–344

    Article  CAS  Google Scholar 

  • Nussberger S, Dörr K, Wang DN, Kühlbrandt W (1993) Lipid-protein interactions in crystals of plant light-harvesting complex. J Mol Biol 234:347–356

    Article  PubMed  CAS  Google Scholar 

  • Paulsen H (1999) Carotenoids and the assembly of light-harvesting complexes. In: Frank HA, Young AJ, Britton G, Cogdell R (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 123–135

    Google Scholar 

  • Perez-Bueno ML, Johnson MP, Zia A, Ruban AV, Horton P (2008) The Lhcb protein and xanthophyll composition of the light harvesting antenna controls the ΔpH-dependency of nonphotochemical quenching in Arabidopsis thaliana. FEBS Lett 582:1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Peter GF, Thornber JP (1991) Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. J Biol Chem 266:16745–16754

    Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O, DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95:13324–13329

    Article  PubMed  CAS  Google Scholar 

  • Polívka T, Zigmantas D, Sundström V, Formaggio E, Cinque G, Bassi R (2002) Carotenoid S1 state in a recombinant light-harvesting complex of photosystem II. Biochemistry 41:439–450

    Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Rees D, Noctor G, Horton P (1992) The effect of high-energy-state excitation quenching on maximum and dark level chlorophyll fluorescence yield. Photosynth Res 25:199–211

    Article  Google Scholar 

  • Ruban AV, Horton P (1999) The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. Plant Physiol 119:531–542

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Johnson MP (2010) Xanthophylls as modulators of membrane protein function. Arch Biochem Biophys 504:78–85

    PubMed  CAS  Google Scholar 

  • Ruban AV, Rees D, Noctor GD, Young AJ, Horton P (1991) Long wavelength chlorophyll species are associated with amplification of high-energy-state excitation quenching in higher plants. Biochim Biophys Acta 1059:355–360

    Article  Google Scholar 

  • Ruban AV, Horton P, Young AJ (1993a) Aggregation of higher plant xanthophylls: differences in absorption spectra and in the dependency on solvent polarity. J Photochem Photobiol B 21:229–234

    Article  CAS  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1993b) Induction of nonphotochemical energy-dissipation and absorbance changes in leaves—evidence for changes in the state of the light-harvesting system of photosystem-II in vivo. Plant Physiol 102:741–750

    PubMed  CAS  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1994) Modulation of chlorophyll fluorescence quenching in isolated light-harvesting complex of photosystem-II. Biochim Biophys Acta 1186:123–127

    Article  CAS  Google Scholar 

  • Ruban AV, Young AJ, Horton P (1996) Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II—an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Biochemistry 35:674–678

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Pesaresi P, Wacker U, Irrgang K-DJ, Bassi R, Horton P (1998) The relationship between the binding of dicyclohexylcarbodiimide and pH-dependent quenching of chlorophyll fluorescence in the light harvesting proteins of photosystem II. Biochemistry 37:11586–11591

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Wentworth M, Horton P (2001) Kinetic analysis of non-photochemical quenching of chlorophyll fluorescence I. Isolated chloroplasts. Biochemistry 40:9896–9901

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Solovieva S, Lee PJ, Ilioaia C, Wentworth M, Ganeteg U, Klimmek F, Chow WS, Anderson J, Jansson S, Horton P (2006) Plasticity in the composition of the light harvesting antenna of higher plants preserves structural integrity and biological function. J Biol Chem 281:14981–14990

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Berera R, Ilioaia C, van Stokkum IH, Kennis JT, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Duffy CDP, Johnson MP (2011a) Natural light harvesting: principles and environmental trends. Energy Environ Sci 4:1643–1650

    Article  CAS  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2011b) Photoprotective molecular switch in photosystem II. Biochim Biophys Acta. doi:10.1016/j.bbabio.2011.04.007

  • Schuldiner S, Rottenberg H, Avron M (1972) Determination of ΔpH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur J Biochem 25:64–70

    Article  PubMed  CAS  Google Scholar 

  • Takizawa K, Cruz JA, Kanazawa A, Kramer DM (2007) The thylakoid proton motive force in vivo Quantitative, non-invasive probes, energetics, and regulatory consequences of light-induced pmf. Biochim Biophys Acta 1767:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Thurlkill RL, Grimsley GR, Scholtz M, Pace CN (2006) Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins. J Mol Biol 362:594–604

    Article  PubMed  CAS  Google Scholar 

  • Walters RG, Ruban AV, Horton P (1994) Higher plant light-harvesting complexes LHCIIa and LHCIIc are bound by dicyclohexylcarbodiimide during inhibition of energy dissipation. Eur J Biochem 226:1063–1069

    Article  PubMed  CAS  Google Scholar 

  • Walters RG, Ruban AV, Horton P (1996) Identification of proton-active residues in a higher plant light-harvesting complex. Proc Natl Acad Sci USA 93:14204–14209

    Article  PubMed  CAS  Google Scholar 

  • Zia A, Johnson MP, Ruban AV (2011) Acclimation- and mutation-induced enhancement of PsbS levels increases photoprotective energy dissipation in the absence of antheraxanthin and zeaxanthin. Planta 233:1253–1264

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research and equipment grants to A.V.R. from the Royal Society and UK Biotechnology and Biological Sciences Research Council and Engineering and Physical Sciences Research Council. The authors wish to thank Krishna Niyogi (University of California, Berkeley, USA) for providing the seeds of the Arabidopsis mutant used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ruban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.P., Zia, A. & Ruban, A.V. Elevated ΔpH restores rapidly reversible photoprotective energy dissipation in Arabidopsis chloroplasts deficient in lutein and xanthophyll cycle activity. Planta 235, 193–204 (2012). https://doi.org/10.1007/s00425-011-1502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1502-0

Keywords

Navigation