Skip to main content
Log in

Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Three cystatin open reading frames named TcCys1, TcCys2 and TcCys3 were identified in cDNA libraries from compatible interactions between Theobroma cacao (cacao) and Moniliophthora perniciosa. In addition, an ORF named TcCys4 was identified in the cDNA library of the incompatible interaction. The cDNAs encoded conceptual proteins with 209, 127, 124, and 205 amino acid residues, with a deduced molecular weight of 24.3, 14.1, 14.3 and 22.8 kDa, respectively. His-tagged recombinant proteins were purified from Escherichia coli expression, and showed inhibitory activities against M. perniciosa. The four recombinant cystatins exhibited K i values against papain in the range of 152–221 nM. Recombinant TcCYS3 and TcCYS4 immobilized in CNBr–Sepharose were efficient to capture M. perniciosa proteases from culture media. Polyclonal antibodies raised against the recombinant TcCYS4 detected that the endogenous protein was more abundant in young cacao tissues, when compared with mature tissues. A ~85 kDa cacao multicystatin induced by M. perniciosa inoculation, MpNEP (necrosis and ethylene-inducing protein) and M. perniciosa culture supernatant infiltration were detected by anti-TcCYS4 antibodies in cacao young tissues. A direct role of the cacao cystatins in the defense against this phytopathogen was proposed, as well as its involvement in the development of symptoms of programmed cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

PLCPs:

Papain-like cysteine proteases

PCD:

Programmed cell death

NEP:

Necrosis and ethylene-inducing proteins

ORF:

Open reading frame

BApNA:

Nl-alpha-benzoyl-dl-arginine-p-nitroanilide hydrochloride

References

  • Abe M, Abe K, Iwabuchi K, Domoto C, Arai (1994) Corn cystatin I expressed in Escherichia coli: investigation of its inhibitory profile and occurrence in corn kernels. J Biochem 116:488–492

    CAS  PubMed  Google Scholar 

  • Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97:1012–1022

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schaver AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Andebrhan T, Figueira A, Yamada MM, Cascardo J, Furtek DB (1999) Molecular fingerprinting suggests two primary outbreaks of witches’ broom disease (Crinipellis perniciosa) of Theobroma cacao in Bahia, Brazil. Eur J Plant Pathol 105:167–175

    Article  CAS  Google Scholar 

  • Arai S, Matsumoto I, Emori Y, Abe K (2002) Plant seed cystatins and their target enzymes of endogenous and exogenous origin. J Agric Food Chem 50:6612–6617

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ (1976) An improved color reagent for use in Barrett’s assay of cathepsin B. Anal Biochem 76:374–376

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ (1994) Classification of peptidases. Methods Enzymol 244:1–15

    Article  CAS  PubMed  Google Scholar 

  • Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Poticelli F, Ascenzi P, Delledonne M (2003) AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 270:2593–2604

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carvalho HAS (2007) Biochemical and molecular analyses of protease from the interaction Theobroma cacaoMoniliophthora perniciosa. Masters dissertation, Universidade Estadual de Santa Cruz, Brazil

  • Ceita GO, Macêdo JNA, Santos TB, Alemanno L, Gesteira AS, Micheli F, Mariano AC, Gramacho KP, Silva DC, Meinhardt L, Mazzafera P, Pereira GAG, Cascardo JCM (2007) Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Sci 173:106–117

    Article  CAS  Google Scholar 

  • Chan YL, Yang AH, Chen JT, Yeh KW, Chan MT (2010) Heterologous expression of taro cystatin protects transgenic tomato against Meloidogyne incognita infection by means of interfering sex determination and suppressing gall formation. Plant Cell Rep 29:231–238

    Article  CAS  PubMed  Google Scholar 

  • Chichkova NV, Kim SH, Titova ES, Kalkum M, Morozov VS, Rubtsov YP, Kalinina NO, Taliansky ME, Vartapetian AB (2004) A plant caspase-like protease activated during the hypersensitive response. Plant Cell 16:157–171

    Article  CAS  PubMed  Google Scholar 

  • Christova PK, Christov NK, Imai R (2006) A cold inducible multidomain cystatin from winter wheat inhibits growth of the snow mold fungus, Microdochium nivale. Planta 223:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Diop NN, Kidric M, Repellin A, Gareil M, d’Arcy-Lameta A, Pham Thi AT, Zuily-Fodil Y (2004) A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. FEBS Lett 577:545–550

    Article  CAS  PubMed  Google Scholar 

  • Evans HC (1980) Pleomorphism in Crinipellis perniciosa, causal agent of witches’ broom disease of cocoa. Trans Br Mycol Soc 74:515–523

    Article  Google Scholar 

  • Freitas-Filho D, Pungartnik C, Cascardo JMC, Brendel M (2006) Broken hyphae of the basidiomycete Crinipellis perniciosa allow quantitative assay of toxicity. Curr Microbiol 52:407–412

    Article  Google Scholar 

  • Garcia O, Macedo JA, Tibúrcio R, Zaparoli G, Rincones J, Bittencourt LM, Ceita GO, Micheli F, Gesteira A, Mariano AC, Schiavinato MA, Medrano FJ, Meinhardt LW, Pereira GA, Cascardo JC (2007) Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches’ broom in Theobroma cacao. Mycol Res 111:443–455

    Article  CAS  PubMed  Google Scholar 

  • Gesteira AS, Micheli F, Carels N, Da Silva AC, Gramacho KP, Schuster I, Macêdo JN, Pereira GA, Cascardo JC (2007) Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa. Ann Bot 100:129–140

    Article  CAS  PubMed  Google Scholar 

  • Gholizadeh A, Santha IN, Kohnehrouz BB, Lodha ML, Kapoor HC (2005) Cystatins may confer viral resistance in plants by inhibition of a virus-induced cell death phenomenon in which cysteine proteinases are active: cloning and molecular characterization of a cDNA encoding cysteine-proteinase inhibitor (celostatin) from Celosia cristata (crested cocks comb). Biotechnol Appl Biochem 42:197–204

    Article  CAS  PubMed  Google Scholar 

  • Gianotti A, Rios WM, Soares-Costa A, Nogaroto V, Carmona AK, Oliva ML, Andrade SS, Henrique-Silva F (2006) Recombinant expression, purification, and functional analysis of two novel cystatins from sugarcane (Saccharum officinarum). Protein Expr Purif 47:483–489

    Article  CAS  PubMed  Google Scholar 

  • Henderson PJF (1972) A linear equation that describes the steady-state kinetics of enzymes and subcellular particles interacting with tightly bound inhibitors. Biochem J 127:321–333

    CAS  PubMed  Google Scholar 

  • Kondo H, Abe K, Nishimura I, Watanabe H, Emori Y, Arai S (1990) Two distinct cystatin species in rice seeds with different specificities against cysteine proteinases. J Appl Biol Chem 265:15832–15837

    CAS  Google Scholar 

  • Kumar S, Tamura K, Jacobsen I, Nei M (2000) MEGA2: molecular evolutionary genetics analysis, version 2.0. Pennsylvania and Arizona State Universities, University Park, Pennsylvania and Tempe, Arizona

  • Kuroda M, Kiyosaki T, Matsumoto I, Misaka T, Arai S, Abe K (2001) Molecular cloning, characterization and expression of wheat cystatins. Biosci Biotechnol Biochem 65:22–28

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Dammann C, Bhattacharyya MK (2001) The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol 127:1788–1797

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Reis EM, Villeret V (1998) Structural and phylogenetic relationships among plant and animal cystatins. Arch Biochem Biophys 359:24–30

    Article  CAS  PubMed  Google Scholar 

  • Margis-Pinheiro M, Zolet ACT, Loss G, Pasquali G, Margis R (2008) Molecular evolution and diversification of plant cysteine proteinase inhibitors: new insights after the poplar genome. Mol Phylogenet Evol 49:349–355

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Abraham Z, Gambardella M, Echaide M, Carbonero P, Diaz I (2005) The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J Exp Bot 56:1821–1829

    Article  CAS  PubMed  Google Scholar 

  • Martinez M, Diaz-Mendoza M, Carrillo L, Diaz I (2007) Carboxy terminal extended phytocystatins are bifunctional inhibitors of papain and legumain cysteine proteinases. FEBS Lett 581:2914–2918

    Article  CAS  PubMed  Google Scholar 

  • Michaud D, Cantin L, Raworth DA, Vrain TC (1996) Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis. Electrophoresis 17:74–79

    Article  CAS  PubMed  Google Scholar 

  • Mondego JM, Carazzolle MF, Costa GG, Formighieri EF, Parizzi LP, Rincones J, Cotomacci C, Carraro DM, Cunha AF, Carrer H, Vidal RO, Estrela RC, García O, Thomazella DP, de Oliveira BV, Pires AB, Rio MC, Araújo MR, de Moraes MH, Castro LA, Gramacho KP, Gonçalves MS, Neto JP, Neto AG, Barbosa LV, Guiltinan MJ, Bailey BA, Meinhardt LW, Cascardo JC, Pereira GA (2008) A genome survey of Moniliophthora perniciosa gives new insights into witches’ broom disease of cacao. BMC Genomics 9:548. doi:10.1186/1471-2164-9-548

    Article  PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Pak C, van Doorn WG (2005) Delay of iris flower senescence by protease inhibitors. New Phytol 165:473–480

    Article  CAS  PubMed  Google Scholar 

  • Pirovani CP, Carvalho HA, Machado RC, Gomes DS, Alvim FC, Pomella AW, Gramacho KP, Cascardo JC, Pereira GA, Micheli F (2008) Protein extraction for proteome analysis from cacao leaves and meristems, organs infected by Moniliophthora perniciosa, the causal agent of the witches’ broom disease. Electrophoresis 29:2391–2401

    Article  CAS  PubMed  Google Scholar 

  • Reis EM, Margis R (2001) Sugarcane phytocystatins: identification, classification, and expression pattern analysis. Genet Mol Biol 24:291–296

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shindo T, Hoorn R (2008) Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol Plant Pathol 9:119–125

    CAS  PubMed  Google Scholar 

  • Shyu DJH, Chou WN, Yiu TJ, Lin CPC, Tzen JTC (2004) Cloning, functional expression and characterization of cystatin in sesame seeds. J Agric Food Chem 52:1350–1356

    Article  CAS  PubMed  Google Scholar 

  • Silva SD, Luz EDMN, Almeida OC, Gramacho K, Bezerra JL (2002) Redescrição da sintomatologia causada por Crinipellis perniciosa em cacaueiro. Agrotrópica 1:1–23

    Google Scholar 

  • Soares-Costa A, Beltramini LM, Thiemann OH, Henrique-Silva F (2002) A sugarcane cystatin: recombinant expression, purification, and antifungal activity. Biochem Biophys Res Commun 296:1194–1199

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Zhang L, Zhang J, Song Y, Guo Y (2009) Differential proteomic analysis of soluble extracellular proteins reveals the cysteine protease and cystatin involved in suspension-cultured cell proliferation in rice. Biochim Biophys Acta 3:459–467

    Google Scholar 

  • Valdés-Rodríguez S, Guerrero-Rangel A, Melgoza-Villagómez C, Chagolla-López A, Delgado-Vargas F, Martínez-Gallardo N, Sánchez-Hernández C, Délano-Frier J (2007) Cloning of a cDNA encoding a cystatin from grain amaranth (Amaranthus hypochondriacus) showing a tissue-specific expression that is modified by germination and abiotic stress. Plant Physiol Biochem 45:790–798

    Article  PubMed  Google Scholar 

  • Van der Hoorn RAL, Jones JDG (2004) The plant proteolytic machinery and its role in defense. Curr Opin Plant Biol 7:400–407

    Article  PubMed  Google Scholar 

  • Waldron C, Wegrich LM, Merlo PAO, Walsh TA (1993) Characterization of a genomic sequence coding for potato multicystatin, an eight-domain cysteine proteinase inhibitor. Plant Mol Biol 23:801–812

    Article  CAS  PubMed  Google Scholar 

  • Wang KM, Kumar S, Cheng YS, Venkatagiri S, Yang AH, Yeh KW (2008) Characterization of inhibitory mechanism and antifungal activity between group-1 and group-2 phytocystatins from taro (Colocasia esculenta). FEBS J 275:4980–4989

    Article  CAS  PubMed  Google Scholar 

  • Weeda SM, Mohan Kumar GN, Knowles RN (2009) Developmentally linked changes in proteases and protease inhibitors suggest a role for potato multicystatin in regulating protein content of potato tubers. Planta 230:73–84

    Article  CAS  PubMed  Google Scholar 

  • Womack JS, Randall J, Kemp JD (2000) Identification of a signal peptide for oryzacystatin-I. Planta 210:844–847

    Article  CAS  PubMed  Google Scholar 

  • Wood GAR, Lass RA (1987) Cocoa, 4th edn. London, Longman Scientific and Technical, Tropical Agriculture Series

  • Wu J, Haard NF (2004) Purification and characterization of a cystatin from the leaves of methyl jasmonate-treated tomato plants. Comp Biochem Physiol 127:209–220

    Google Scholar 

  • Yang AH, Yeh KW (2005) Molecular cloning, recombinant gene expression, and antifungal activity of cystatin from taro (Colocasia esculenta cv. Kaosiung no. 1). Planta 221:493–501

    Article  CAS  PubMed  Google Scholar 

  • Yoza K, Nakamura S, Yaguchi M, Haraguchi K, Ohtsubo K (2002) Molecular cloning and functional expression of cDNA encoding a cysteine proteinase inhibitor, cystatin, from Job’s tears (Coix lacryma-jobi L. var Ma-yuen Stapf). Biosci Biotechnol Biochem 66:2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Botella MA, Subramanian L, Niu X, Nielsen SS, Bressan RA, Hasegawa PM (1996) Two wound inducible soybean cysteine proteinases have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol 111:1299–1306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the ‘Financiadora de Estudos e Projetos’ (FINEP) and the ‘Fundação de Amparo à Pesquisa do Estado da Bahia’ (FAPESB) M. perniciosa proteomic network. F C Alvim was the recipient of a PQI/CAPES graduate fellowship, and C P Pirovani was the recipient of a FAPESB graduate fellowship. We thank Robson José Costa Dias (Laboratório de Genômica, UESC) for technical assistance and Dra. Karina Perez Gramacho (CEPEC, CEPLAC, Brasil) for the support in cacao seedlings inoculations with M. perniciosa basidiospores. We are thankful to Dr. Antonio Figueira (CENA/USP-SP, Brazil) for critical reading of the manuscript. J.C.M. Cascardo is recipient of CNPq research fellowship number 303987/2008-1. R. Margis is recipient of CNPq research fellowship number 302684/2005-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Júlio Cézar de Mattos Cascardo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirovani, C.P., da Silva Santiago, A., dos Santos, L.S. et al. Theobroma cacao cystatins impair Moniliophthora perniciosa mycelial growth and are involved in postponing cell death symptoms. Planta 232, 1485–1497 (2010). https://doi.org/10.1007/s00425-010-1272-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1272-0

Keywords

Navigation