Skip to main content
Log in

Involvement of Arabidopsis thaliana phospholipase Dζ2 in root hydrotropism through the suppression of root gravitropism

  • Rapid Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Root hydrotropism is the phenomenon of directional root growth toward moisture under water-deficient conditions. Although physiological and genetic studies have revealed the involvement of the root cap in the sensing of moisture gradients, and those of auxin and abscisic acid (ABA) in the signal transduction for asymmetric root elongation, the overall mechanism of root hydrotropism is still unclear. We found that the promoter activity of the Arabidopsis phospholipase Dζ2 gene (PLDζ2) was localized to epidermal cells in the distal root elongation zone and lateral root cap cells adjacent to them, and that exogenous ABA enhanced the activity and extended its area to the entire root cap. Although pldζ2 mutant root caps did not exhibit a morphological phenotype in either the absence or presence of exogenous ABA, the inhibitory effect of ABA on gravitropism, which was significant in wild-type roots, was not observed in pldζ2 mutant roots. In root hydrotropism experiments, pldζ2 mutations significantly retarded or disturbed root hydrotropic responses. A drought condition similar to that used in a hydrotropism experiment enhanced the PLDζ2 promoter activity in the root cap, as did exogenous ABA. These results suggest that PLDζ2 responds to drought through ABA signaling in the root cap and accelerates root hydrotropism through the suppression of root gravitropism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

ABA:

Abscisic acid

ACC:

Aminocyclopropane-1-carboxylic acid

BA:

Benzyl adenine

DAG:

Day after germination

GA:

Gibberellic acid

GUS:

β-Glucuronidase

IAA:

Indole acetic acid

MeJA:

Methyl jasmonic acid

PLD:

Phospholipase D

References

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bargmann BO, Munnik T (2006) The role of phospholipase D in plant stress responses. Curr Opin Plant Biol 9:515–522

    Article  CAS  PubMed  Google Scholar 

  • Bargmann BOR, Laxalt AM, ter Riet B, van Schooten B, Merquiol E, Testerink C, Haring MA, Bartels D, Munnik T (2009) Multiple PLDs required for high salinity and water deficit tolerance in plants. Plant Cell Physiol 50:78–89

    Article  CAS  PubMed  Google Scholar 

  • Cazzolli R, Shemon AN, Fang MQ, Hughes WE (2006) Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life 58:457–461

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L (2006) Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proc Natl Acad Sci USA 103:6765–6770

    Article  CAS  PubMed  Google Scholar 

  • Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546

    Article  CAS  PubMed  Google Scholar 

  • Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jugens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    Article  CAS  PubMed  Google Scholar 

  • Han W, Rong H, Zhang H, Wang MH (2009) Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana. Biochem Biophys Res Commun 378:695–700

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa T, Takahashi H, Suge H, Ishihara K (1997) Water potential turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea, Pisum sativum L. Plant Cell Environ 20:381–386

    Article  Google Scholar 

  • Jacob T, Ritchie S, Assman SM, Gilroy S (1999) Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc Natl Acad Sci USA 96:12192–12197

    Article  CAS  PubMed  Google Scholar 

  • Jaffe MJ, Takahashi H, Biro RL (1985) A pea mutant for the study of hydrotropism in roots. Science 230:445–447

    Article  PubMed  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    Article  CAS  PubMed  Google Scholar 

  • Kaneyasu T, Kobayashi A, Nakayama M, Fujii N, Takahashi H, Miyazawa Y (2007) Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots. J Exp Bot 58:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci USA 104:4724–4729

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xue HW (2007) Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response. Plant Cell 19:281–295

    Article  CAS  PubMed  Google Scholar 

  • Li M, Welti R, Wang X (2006a) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases Dζ1 and Dζ2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761

    Article  CAS  PubMed  Google Scholar 

  • Li M, Qin C, Welti R, Wang X (2006b) Double knockouts of phospholipases Dζ1 and Dζ2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 140:761–770

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hong Y, Wang X (2009) Phospholipase D- and phosphatidic acid-mediated signaling in plants. Biochim Biophys Acta. doi:10.1016/j.bbalip.2009.02.017

  • Maseda PH, Fernandez RJ (2006) Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J Exp Bot 57:3963–3977

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2009) GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840

    Article  CAS  PubMed  Google Scholar 

  • Mizuno H, Kobayashi A, Fujii N, Yamashita M, Takahashi H (2002) Hydrotropic response and expression pattern of auxin-inducible gene, CS-IAA1, in primary roots of clinorotated cucumber seedlings. Plant Cell Physiol 43:793–801

    Article  CAS  PubMed  Google Scholar 

  • Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G, Ishikawa H, Evans M, Palme K (2003) Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991

    Article  CAS  PubMed  Google Scholar 

  • Oude Weernink PA, Lopez de Jesus M, Schmidt M (2007) Phospholipase D signaling: orchestration by PIP2 and small GTPases. Naunyn Schmiedebergs Arch Pharmacol 374:399–411

    Article  CAS  PubMed  Google Scholar 

  • Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ 31:205–217

    CAS  PubMed  Google Scholar 

  • Qin C, Wang X (2002) The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiol 128:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Ritchie S, Gilroy S (1998) Abscisic acid signal transduction in the barley aleurone is mediated by phospholipase D activity. Proc Natl Acad Sci USA 95:2697–2702

    Article  CAS  PubMed  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reiss B, Dekker KA, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Umezawa T, Urano K, Shinozaki K (2007) Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10:296–302

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao CX (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Galweller L, Palme K, Jugens G (1999) Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286:316–318

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Kramer EM, Perry P, Knox K, Leyser HM, Haseloff J, Beemster GT, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7:1057–1065

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H (1997) Hydrotropism: the current state of our knowledge. J Plant Res 1110:163–169

    Article  Google Scholar 

  • Takahashi H, Scott TK (1993) Intensity of hydrotropism for induction of root hydrotropism and sensing of the hydrostimulus by the root cap. Plant Cell Environ 16:99–103

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Suge H (1991) Root hydrotropism of an agravitropic pea mutant, ageotropum. Physiol Plant 96:558–564

    Article  CAS  Google Scholar 

  • Takahashi N, Goto N, Okada K, Takahashi H (2002) Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana. Planta 216:203–211

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Miyazawa Y, Fujii N (2009) Hormonal interaction during root tropic growth: hydrotropism versus gravitropism. Plant Mol Biol 69:489–502

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Takahashi H, Hirasawa T, Suge H (1995) Hydrotropism in roots: sensing of a gradient in water potential by the root cap. Planta 197:410–413

    Article  CAS  Google Scholar 

  • Takano M, Takahashi H, Suge H (1997) Calcium requirement for the induction of hydrotropism and enhancement of calcium-induced curvature by water stress in primary roots of pea, Pisum sativum L. Plant Cell Physiol 38:385–391

    CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2005) Regulatory functions of phospholipase D and phosphatidic acid in plant growth, development, and stress responses. Plant Physiol 139:566–573

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45:250–278

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Chen X, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Qin C, Zhao J, Wang X (2004) Phospholipase D α1-derived phosphatidic acid interacts with ABI1 phospholipase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci USA 101:9508–9513

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Hideyuki Takahashi (Tohoku University, Sendai, Japan), Dr. Mie Shimojima (Tokyo Institute of Technology, Yokohama, Japan), and Dr. Hiroyuki Ohta (Tokyo Institute of Technology, Yokohama, Japan) for helpful suggestions and discussion, Mr. Teppei Moriwaki (Tohoku University, Sendai, Japan) for technical advice, and Ms. Keiko Yasuda (Kyoto University, Kyoto, Japan) for technical assistance. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology, Japan (Grants-in-Aid for Scientific Research on Priority Areas; 18056012 and 20053010 to T.A.) and by Institute of Sustainability Science, Kyoto University (Exploratory Research to T.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Aoyama.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, Y.Y., Taniguchi, M., Tsuge, T. et al. Involvement of Arabidopsis thaliana phospholipase Dζ2 in root hydrotropism through the suppression of root gravitropism. Planta 231, 491–497 (2010). https://doi.org/10.1007/s00425-009-1052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1052-x

Keywords

Navigation