Skip to main content
Log in

Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [3H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [14C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD → nicotinamide mononucleotide → nicotinamide riboside → nicotinic acid riboside → nicotinic acid mononucleotide → nicotinic acid adenine dinucleotide → NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-14C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-14C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NaAD:

Nicotinic acid adenine dinucleotide

NaG:

Nicotinic acid N-glucoside

NaMN:

Nicotinic acid mononucleotide

NaR:

Nicotinic acid N-riboside

NMN:

Nicotinamide mononucleotide

NR:

Nicotinamide riboside

References

  • Ashihara H (2008) Trigonelline (N-methylnicotinic acid) biosynthesis and its biological role in plants. Nat Prod Commun 3:1423–1428

    CAS  Google Scholar 

  • Ashihara H, Stasolla C, Loukanina N, Thorpe TA (2000) Purine and pyrimidine metabolism in cultured white spruce (Picea glauca) cells: metabolic fate of 14C-labeled precursors and activity of key enzymes. Physiol Plant 108:25–33

    CAS  Google Scholar 

  • Ashihara H, Stasolla C, Yin Y, Loukanina N, Thorpe TA (2005) De novo and salvage biosynthetic pathways of pyridine nucleotides and nicotinic acid conjugates in cultured plant cells. Plant Sci 169:107–114

    Article  CAS  Google Scholar 

  • Barz W (1985) Metabolism and degradation of nicotinic acid in plant cell cultures. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin, pp 186–195

    Google Scholar 

  • Bieganowski P, Brenner C (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss–Handler independent route to NAD+ in fungi and humans. Cell 117:495–502

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Burrell MM (1994) Control of carbohydrate metabolism in potato tubers. In: Belknap WR, Vayda ME, Park WD (eds) The molecular and cellular biology of the potato. CAB International, Wallingford, pp 45–55

    Google Scholar 

  • Chen X, Wood AJ (2004) Purification and characterization of S-adenosyl-L-methionine nicotinic acid-N-methyltransferase from leaves of Glycine max. Biol Plant 48:531–535

    Article  CAS  Google Scholar 

  • Dulyaninova NG, Podlepa EM, Toulokhonova LV, Bykhovsky VY (2000) Salvage pathway for NAD biosynthesis in Brevibacterium ammoniagenes: regulatory properties of triphosphate-dependent nicotinate phosphoribosyltransferase. Biochim Biophys Acta 1478:211–220

    CAS  PubMed  Google Scholar 

  • Geigenberger P, Regierer B, Nunes-Nesi A, Leisse A, Urbanczyk-Wochniak E, Springer F, Van Dongen JT, Kossmann J, Fernie AR (2005) Inhibition of de novo pyrimidine synthesis in growing potato tubers leads to a compensatory stimulation of the pyrimidine salvage pathway and a subsequent increase in biosynthetic performance. Plant Cell 17:2077–2088

    Article  CAS  PubMed  Google Scholar 

  • Giermann N, Schröder M, Ritter T, Zrenner R (2002) Molecular analysis of de novo pyrimidine synthesis in Solanaceous species. Plant Mol Biol 50:393–403

    Article  CAS  PubMed  Google Scholar 

  • Hashida SN, Takahashi H, Kawai-Yamada M, Uchimiya H (2007) Arabidopsis thaliana nicotinate/nicotinamide mononucleotide adenyltransferase (AtNMNAT) is required for pollen tube growth. Plant J 49:694–703

    Article  CAS  PubMed  Google Scholar 

  • Hashida SN, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819–824

    Article  CAS  PubMed  Google Scholar 

  • Hunt L, Lerner F, Ziegler M (2004) NAD—new roles in signalling and gene regulation in plants. New Phytol 163:31–44

    Article  CAS  Google Scholar 

  • Imai T (1973) Purification and properties of nicotinamide mononucleotide amidohydrolase from Azotobacter vinelandii. J Biochem 73:139–153

    CAS  PubMed  Google Scholar 

  • Katahira R, Ashihara H (2002) Profiles of pyrimidine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 215:821–828

    Article  CAS  PubMed  Google Scholar 

  • Katahira R, Ashihara H (2006a) Dual function of pyrimidine metabolism in potato (Solanum tuberosum) plants: pyrimidine salvage and supply of β-alanine to pantothenic acid synthesis. Physiol Plant 127:38–43

    Article  CAS  Google Scholar 

  • Katahira R, Ashihara H (2006b) Profiles of purine biosynthesis, salvage and degradation in disks of potato (Solanum tuberosum L.) tubers. Planta 225:115–126

    Article  CAS  PubMed  Google Scholar 

  • Katahira R, Ashihara H (2006c) Role of adenosine salvage in wound-induced adenylate biosynthesis in potato tuber slices. Plant Physiol Biochem 44:551–555

    Article  CAS  PubMed  Google Scholar 

  • Katoh A, Hashimoto T (2004) Molecular biology of pyridine nucleotide and nicotine biosynthesis. Front Biosci 9:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Katoh A, Uenohara K, Akita M, Hashimoto T (2006) Early steps in the biosynthesis of NAD in Arabidopsis: start with aspartate and occur in the plastid. Plant Physiol 141:851–857

    Article  CAS  PubMed  Google Scholar 

  • Köster S, Upmeier B, Komossa D, Barz W (1989) Nicotinic acid conjugation in plants and plant cell cultures of potato (Solanum tuberosum). Z Naturforsch 44c:623–628

    Google Scholar 

  • Loef I, Stitt M, Geigenberger P (1999) Orotate leads to a specific increase in uridine nucleotide levels and a stimulation of sucrose degradation and starch synthesis in discs from growing potato tubers. Planta 209:314–323

    Article  CAS  PubMed  Google Scholar 

  • Loef I, Stitt M, Geigenberger P (2001) Increased levels of adenine nucleotides modify the interaction between starch synthesis and respiration when adenine is supplied to discs from growing potato tubers. Planta 212:782–791

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Ashihara H (2008) Nicotinate riboside salvage in plants: presence of nicotinate riboside kinase in mungbean seedlings. Plant Physiol Biochem 46:104–108

    Article  CAS  PubMed  Google Scholar 

  • Matsui A, Yin Y, Yamanaka K, Iwasaki M, Ashihara H (2007) Metabolic fate of nicotinamide in higher plants. Physiol Plant 131:191–200

    CAS  PubMed  Google Scholar 

  • Mizusaki S, Tanabe Y, Kisaki T, Tamaki E (1970) Metabolism of nicotinic acid in tobacco plants. Phytochemistry 9:549–554

    Article  CAS  Google Scholar 

  • Moat AG, Foster JW (1987) Biosynthesis and salvage pathways of pyridine nucleotides. In: Dolphin D, Avramovic O, Poulson R (eds) Pyridine nucleotide coenzymes. Chemical, biochemical, and medical aspects, part B. Wiley and Sons, New York, pp 1–24

    Google Scholar 

  • Nishitani H, Yamada Y, Ohshima N, Okumura K, Taguchi H (1995) Identification of N-(beta-D-glucopyranosyl)nicotinic acid as a major metabolite from niacin in cultured tobacco cells. Biosci Biotech Biochem 59:1336–1338

    Article  CAS  Google Scholar 

  • Noctor G, Queval G, Gakiere B (2006) NAD(P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. J Exp Bot 57:1603–1620

    Article  CAS  PubMed  Google Scholar 

  • Revollo JR, Grimm AA, Si Imai (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279:50754–50763

    Article  CAS  PubMed  Google Scholar 

  • Riewe D, Grosman L, Fernie AR, Zauber H, Wucke C, Geigenberger P (2008) A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum. Plant Cell Physiol 49:1572–1579

    Article  CAS  PubMed  Google Scholar 

  • Schippers JHM, Nunes-Nesi A, Apetrei R, Hille J, Fernie AR, Dijkwel PP (2008) The Arabidopsis onset of leaf death5 mutation of quinolinate synthase affects nicotinamide adenine dinucleotide biosynthesis and causes early ageing. Plant Cell 20:2909–2925

    Article  CAS  PubMed  Google Scholar 

  • Schröder M, Giermann N, Zrenner R (2005) Functional analysis of the pyrimidine de novo synthesis pathway in Solanaceous species. Plant Physiol 138:1926–1938

    Article  PubMed  Google Scholar 

  • Shimizu MM, Mazzafera P (2000) A role for trigonelline during imbibition and germination of coffee seeds. Plant Biol 2:605–611

    Article  CAS  Google Scholar 

  • Stasolla C, Katahira R, Thorpe TA, Ashihara H (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J Plant Physiol 160:1271–1295

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Shimabayashi Y (1983) Findings of trigonelline demethylating enzyme activity in various organisms and some properties of the enzyme from hog liver. Biochem Biophys Res Commun 113:569–574

    Article  CAS  PubMed  Google Scholar 

  • Taguchi H, Sasatani K, Nishitani H, Okumura K (1997) Finding of UDP-glucose: nicotinic acid-N-glucosyltransferase activity in cultured tobacco cells and its properties. Biosci Biotech Biochem 61:720–722

    Article  CAS  Google Scholar 

  • Upmeier B, Gross W, Koster S, Barz W (1988) Purification and properties of S-adenosyl-l-methionine:nicotinic acid-N-methyltransferase from cell suspension cultures of Glycine max L. Arch Biochem Biophys 262:445–454

    Article  CAS  PubMed  Google Scholar 

  • van der Veer E, Ho C, O’Neil C, Barbosa N, Scott R, Cregan SP, Pickering JG (2007) Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem 282:10841–10845

    Article  PubMed  Google Scholar 

  • Wagner KG, Backer AI (1992) Dynamics of nucleotides in plants studied on a cellular basis. Int Rev Cytol 134:1–84

    Article  CAS  Google Scholar 

  • Wagner R, Wagner KG (1985) The pyridine nucleotide cycle in tobacco. Enzyme activities for the de novo synthesis of NAD. Planta 165:532–537

    Article  CAS  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986a) Regulation in tobacco callus of enzyme activities of the nicotine pathway II. The pyridine-nucleotide cycle. Planta 168:408–413

    Article  CAS  Google Scholar 

  • Wagner R, Feth F, Wagner KG (1986b) The pyridine-nucleotide cycle in tobacco: enzyme activities for the recycling of NAD. Planta 167:226–232

    Article  CAS  Google Scholar 

  • Wang G, Pichersky E (2007) Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J 49:1020–1029

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (1982) Metabolism of pyrimidines and purines. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, N.S., vol 14B. Springer, Berlin, pp 263–301

  • Willeke U, Heeger V, Meise M, Neuhann H, Schindelmeiser I, Vordemfelde K, Barz W (1979) Mutually exclusive occurrence and metabolism of trigonelline and nicotinic acid arabinoside in plant cell cultures. Phytochemistry 18:105–110

    Article  CAS  Google Scholar 

  • Yin Y, Matsui A, Sakuta M, Ashihara H (2008) Changes in pyridine metabolism profile during growth of trigonelline-forming Lotus japonicus cell cultures. Phytochemistry 69:2891–2898

    Article  CAS  PubMed  Google Scholar 

  • Zheng XQ, Nagai C, Ashihara H (2004) Pyridine nucleotide cycle and trigonelline (N-methylnicotinic acid) synthesis in developing leaves and fruits of Coffea arabica. Physiol Plant 122:404–411

    Article  CAS  Google Scholar 

  • Zheng XQ, Hayashibe E, Ashihara H (2005) Changes in trigonelline (N-methylnicotinic acid) content and nicotinic acid metabolism during germination of mungbean (Phaseolus aureus) seeds. J Exp Bot 56:1615–1623

    Article  CAS  PubMed  Google Scholar 

  • Zheng XQ, Matsui A, Ashihara H (2008) Biosynthesis of trigonelline from nicotinate mononucleotide in mungbean seedlings. Phytochemistry 69:390–395

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U, Boldt R (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Ashihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katahira, R., Ashihara, H. Profiles of the biosynthesis and metabolism of pyridine nucleotides in potatoes (Solanum tuberosum L.). Planta 231, 35–45 (2009). https://doi.org/10.1007/s00425-009-1023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1023-2

Keywords

Navigation