Skip to main content

Advertisement

Log in

Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Rice is a poor source of micronutrients such as iron and zinc. To help clarify the molecular mechanisms that regulate metal mobilization from leaves to developing seeds, we conducted suppression subtractive hybridization analysis in flag leaves of two rice cultivars. Flag leaves are the major source of remobilized metals for developing seeds. We isolated 78 sequences up-regulated in flag leaves at the grain filling stage relative to the panicle exertion stage. Differential expression of selected genes (encoding 7 transport proteins, the OsNAS3 enzyme and the OsNAC5 transcription factor) was confirmed by quantitative RT-PCR. We show that OsNAC5 expression is up-regulated by natural (aging) and induced senescence processes (dark, ABA application, high salinity, cold and Fe-deficiency) and its expression is not affected in the presence of 6-benzylaminopurine (a senescence inhibitor) under dark-induced senescence. Salt induction of OsNAC5 expression is abolished by nicotinamide, an inhibitor of ABA effects. This result and the presence of cis-acting elements in the promoter region of the OsNAC5 gene suggest an ABA-dependent regulation. Using four different rice cultivars, we show that OsNAC5 up-regulation is higher and earlier in flag leaves and panicles of IR75862 plants, which have higher seed concentrations of Fe, Zn and protein. We suggest that OsNAC5 is a novel senescence-associated ABA-dependent NAC transcription factor and its function could be related to Fe, Zn and amino acids remobilization from green tissues to seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ABC:

ATP-binding cassette

BAP:

6-Benzylaminopurine

GST1:

Glutathione-S-transferase

ICP-OES:

Inductively coupled plasma optical emission spectroscopy

MES:

2,4-Morpholino-ethane sulfonic acid

MST:

Monosaccharide transporter

NA:

Nicotianamine

NAS:

Nicotianamine synthase

OPT:

Oligopeptide transporter

PTR:

Peptide transporter

SGR:

Staygreen

SSH:

Suppression subtractive hybridization

STP:

Sugar transport protein

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, Nam HG, Lin JF, Wu SH, Swidzinski J, Ishizaki K, Leaver CJ (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  PubMed  CAS  Google Scholar 

  • Burstin J, Marget P, Huart M, Moessner A, Mangin B, Duchene C, Desprez B, Munier-Jolain N, Duc G (2007) Developmental genes have pleiotropic effects on plant morphology and source capacity, eventually impacting on seed protein content and productivity in pea. Plant Physiol 144:768–781

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    Article  PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  PubMed  CAS  Google Scholar 

  • Counce PA, Keisling TC, Mitchell AJ (2000) A uniform, objective and adaptative system for expressing rice development. Crop Sci 40:436–443

    Article  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  PubMed  CAS  Google Scholar 

  • Diatchenko L, Lau YFC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  • Dietrich D, Hammes U, Thor K, Suter-Grotemeyer M, Flückiger R, Slusarenko AJ, Ward JM, Rentsch D (2004) AtPTR1, a plasma membrane peptide transporter expressed during seed germination and in vascular tissue of Arabidopsis. Plant J 40:488–499

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Duan M, Sun SSM (2005) Profiling the expression of genes controlling rice grain quality. Plant Mol Biol 59:165–178

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563

    Article  PubMed  CAS  Google Scholar 

  • Ganesan G, Sankararamasubramanian HM, Narayanan JM, Sivaprakash KR, Parida A (2008) Transcript level characterization of a cDNA encoding stress regulated NAC transcription factor in the mangrove plant Avicennia marina. Plant Physiol Biochem 46:928–934

    Article  PubMed  CAS  Google Scholar 

  • Garnett TP, Graham RD (2005) Distribution and remobilization of iron and copper in wheat. Ann Bot 95:817–826

    Article  PubMed  CAS  Google Scholar 

  • Gear ML, McPhillips ML, Patrick JW, McCurdy DW (2000) Hexose transporters of tomato: molecular cloning, expression analysis and functional characterization. Plant Mol Biol 44:687–697

    Article  PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  PubMed  CAS  Google Scholar 

  • Greene FC (1983) Expression of storage protein genes in developing wheat (Triticum aestivum L.) seeds. Correlation of RNA accumulation and protein synthesis. Plant Physiol 71:40–46

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  • Hayes MA, Davies C, Dry IB (2007) Isolation, functional characterization, and expression analysis of grapevine (Vitis vinifera L.) hexose transporters: differential roles in sink and source tissues. J Exp Bot 58:1985–1997

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucl Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Watanabe S, Takahashi M, Kawasaki S, Nakanishi H, Nishizawa NK, Mori S (2001) Nicotianamine synthase gene expression differs in barley and rice under Fe-deficient conditions. Plant J 25:159–167

    Article  PubMed  CAS  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158:1317–1323

    Article  CAS  Google Scholar 

  • Hocking PJ (1994) Dry-matter production, mineral nutrient concentrations, and nutrient distribution and redistribution in irrigated spring wheat. J Plant Nutr 17:1289–1308

    Article  CAS  Google Scholar 

  • Hocking PJ, Pate JS (1977) Mobilization of minerals to developing seeds of legumes. Ann Bot 41:1259–1278

    CAS  Google Scholar 

  • Hortensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Higuchi K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2003) Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J 36:366–381

    Article  PubMed  CAS  Google Scholar 

  • Jiang SL, Wu JG, Feng Y, Yang XE, Shi CH (2007a) Correlation analysis of mineral element contents and quality traits in milled rice (Oryza sativa L.). J Agric Food Chem 55:9608–9613

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Struik PC, Lingna J, van Keulen H, Ming Z, Stomph TJ (2007b) Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Ann Appl Biol 150:383–391

    Article  CAS  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT, Nagato Y, Matsusoka M, Hirano HY (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet 262:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46:1809–1818

    Article  PubMed  CAS  Google Scholar 

  • Kong Z, Li M, Yang W, Xu W, Xue Y (2006) A novel nuclear-localized CCCH-type zinc finger protein, OsDOS, is involved in delaying leaf senescence in rice. Plant Physiol 141:1376–1388

    Article  PubMed  CAS  Google Scholar 

  • Kramer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A (2007) Rice NON-YELLOW COLORING1 is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell 19:1362–1375

    Article  PubMed  CAS  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM (1998) Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:15837–15842

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  PubMed  CAS  Google Scholar 

  • Lin JF, Wu SH (2004) Molecular events in senescing Arabidopsis leaves. Plant J 39:612–628

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martre P, Porter JR, Jamieson PD, Triböi E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulation of nitrogen remobilization for wheat. Plant Physiol 133:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Morgounov A, Gómez-Becerra HF, Abugalieva A, Dzhunusova M, Yessimbekova M, Muminjanov H, Zelenskiy Y, Ozturk L, Cakmak I (2007) Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 155:193–203

    Article  Google Scholar 

  • Morris RT, O’Connor TR, Wyrick JJ (2008) Osiris: an integrated promoter database for Oryza sativa L. Bioinformatics 24:2915–2917

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Fujita Y, Katsura K, Maruyama K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol Biol 60:51–68

    Article  PubMed  CAS  Google Scholar 

  • Nakashima K, Tram LSP, Nguyen DV, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630

    Article  PubMed  CAS  Google Scholar 

  • Narayanan NN, Vasconcelos MW, Grusak MA (2007) Expression profiling of Oryza sativa metal homeostasis genes in different rice cultivars using a cDNA macroarray. Plant Physiol Biochem 45:277–286

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa NK (2005) The uptake and translocation of minerals in rice plants. In: Toriyama K, Heong KL, Hardy B (eds) Rice is life: scientific perspectives for the 21st century. Session 3: Opportunities and challenges of transgenic rice. Proceedings of the world rice research conference. International Rice Research Institute, Los Baños (Philippines) and Japan International Research Center for Agricultural Sciences, Tsukuba (Japan), 590 p

  • Obata H, Kawamura S, Senoo K, Tanaka A (1999) Changes in the level of protein and activity of Cu/Zn-superoxide dismutase in zinc deficient rice plant, Oryza sativa L. Soil Sci Plant Nutr 45:891–896

    CAS  Google Scholar 

  • Ogo Y, Itai RN, Nakanishi H, Inoue H, Kobayashi T, Suzuki M, Takahashi M, Mori S, Nishizawa NK (2006) Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot 57:2867–2878

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi T, Sugahara S, Yamada T, Kikuchi K, Yoshiba Y, Hirano HY, Tsutsumi N (2005) OsNAC6, a member of the NAC gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139

    Article  PubMed  CAS  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL, Skriver K (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    Article  PubMed  CAS  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Sayers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    Article  CAS  Google Scholar 

  • Park SY, Yu JW, Park JS, Li J, Yoo SC, Lee NY, Lee SK, Jeong SW, Seo HS, Koh HJ, Jeon JS, Park Y, Paek NC (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  PubMed  CAS  Google Scholar 

  • Pearson JN, Rengel Z (1994) Distribution and remobilization of Zn and Mn during grain development in wheat. J Exp Bot 45:1829–1835

    Article  CAS  Google Scholar 

  • Schaaf G, Schikora A, Häberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wirén N (2005) A putative function for the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46:762–774

    Article  PubMed  CAS  Google Scholar 

  • Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C (2005) Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in pea revealed by 15N in vivo labeling throughout seed filling. Plant Physiol 137:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Schulze W, Frommer WB, Ward JM (1999) Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes. Plant J 17:637–646

    Article  PubMed  CAS  Google Scholar 

  • Scofield GN, Hirose T, Aoki N, Furbank RT (2007) Involvement of the sucrose transporter, OsSUT1, in the long-distance pathway for assimilate transport in rice. J Exp Bot 58:3155–3169

    Article  PubMed  CAS  Google Scholar 

  • Silveira VC, Oliveira AP, Sperotto RA, Espindola LS, Amaral L, Dias JF, Cunha JB, Fett JP (2007) Influence of iron on mineral status of two rice (Oryza sativa L.) cultivars. Braz J Plant Physiol 19:127–139

    Article  Google Scholar 

  • Souer E, van Houwelingen A, Kloos D, Mol J, Koes R (1996) The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    Article  PubMed  CAS  Google Scholar 

  • Sperotto RA, Ricachenevsky FK, Fett JP (2007) Iron deficiency in rice shoots: identification of novel induced genes using RDA and possible relation to leaf senescence. Plant Cell Rep 26:1399–1411

    Article  PubMed  CAS  Google Scholar 

  • Sperotto RA, Boff T, Duarte GL, Fett JP (2008) Increased senescence-associated gene expression and lipid peroxidation induced by iron deficiency in rice roots. Plant Cell Rep 27:183–195

    Article  PubMed  CAS  Google Scholar 

  • Stacey G, Koh S, Granger C, Becker JM (2002) Peptide transport in plants. Trends Plant Sci 7:257–263

    Article  PubMed  CAS  Google Scholar 

  • Stacey MG, Patel A, McClain WE, Mathieu M, Remley M, Rogers EE, Gassmann W, Blevins DG, Stacey G (2008) The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiol 146:589–601

    Article  PubMed  CAS  Google Scholar 

  • Stein RJ, Duarte GL, Spohr MG, Lopes SG, Fett JP (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Ann Appl Biol 154:269–277

    Article  CAS  Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Toyofuku K, Matsukura C, Yamaguchi J (2001) Sugar transporters involved in flowering and grain development of rice. J Plant Physiol 158:465–470

    Article  CAS  Google Scholar 

  • Toyofuku K, Kasahara M, Yamaguchi J (2000) Characterization and expression of monosaccharide transporters (OsMSTs) in rice. Plant Cell Physiol 41:940–947

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Vasconcelos M, Musetti V, Li CM, Datta SK, Grusak MA (2004) Functional analysis of transgenic rice (Oryza sativa L.) transformed with an Arabidopsis thaliana ferric reductase (AtFRO2). Soil Sci Plant Nutr 50:1151–1157

    Article  CAS  Google Scholar 

  • Vasconcelos M, Li G, Lubkowitz M, Grusak MA (2008) Characterization of the PT clade of oligopeptide transporters in rice. Plant Genome 1:77–88

    Article  CAS  Google Scholar 

  • Von Wirén N, Klair S, Bansal S, Briat JF, Khodr H, Shioiri T, Leigh RA, Hider RC (1999) Nicotianamine chelates both Fe(III) and Fe(II). Implications for metal transport in plants. Plant Physiol 119:1107–1114

    Article  Google Scholar 

  • Wang Y, Xu H, Wei X, Chai C, Xiao Y, Zhang Y, Chen B, Xiao G, Ouwerkerk PBF, Wang M, Zhu Z (2007) Molecular cloning and expression analysis of a monosaccharide transporter gene OsMST4 from rice (Oryza sativa L.). Plant Mol Biol 65:439–451

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Xiao Y, Zhang Y, Chai C, Wei G, Wei X, Xu H, Wang M, Ouwerkerk PBF, Zhu Z (2008) Molecular cloning, functional characterization and expression analysis of a novel monosaccharide transporter gene OsMST6 from rice (Oryza sativa L.). Planta 228:525–535

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia, Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177:389–405

    PubMed  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    Article  PubMed  Google Scholar 

  • Xu X, Fang J, Wang W, Guo J, Chen P, Cheng J, Shen Z (2008) Expression of a bacterial α-amylase gene in transgenic rice seeds. Transgenic Res 17:645–650

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J Exp Bot 53:727–735

    Article  PubMed  CAS  Google Scholar 

  • Yazaki N, Kojima K, Suzuki K, Kishimoto N, Kikuchi S (2004) The Rice PIPELINE: a unification tool for plant functional genomics. Nucl Acids Res 32:383–387

    Article  Google Scholar 

  • Zhang CD, Romheld V, Marschner H (1995) Retranslocation of iron from primary leaves of bean plants grown under iron deficiency. J Plant Physiol 146:268–272

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by HarvestPlus (Agreement number 6005-05), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to JPF, and by the USDA-ARS under Agreement number 58-6250-6-003 to MAG. The authors thank Instituto Rio-Grandense do Arroz (IRGA) for technical support. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette Palma Fett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Copper (a), Manganese (b) and Molybdenum (c) concentrations in whole seeds from eight diverse rice cultivars. Seeds were collected at full maturity (R9 stage). Values are the averages of three samples ± SE. Means indicated by different letters are different by the Tukey HSD test (P ≤ 0.05). DW = dry weight. (JPG 291 kb)

Fig. 2

Relative expression levels (qRT-PCR, relative to Ubiquitin expression) of OsNAC5 in flag leaves of eight diverse rice genotypes collected in R3 (panicle exertion) and R5 (grain filling) stages. Values are the averages of three samples ± SE. Means with one asterisk are different by t test (P ≤ 0.05). (JPG 220 kb)

Supplementary material 3 (DOC 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperotto, R.A., Ricachenevsky, F.K., Duarte, G.L. et al. Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230, 985–1002 (2009). https://doi.org/10.1007/s00425-009-1000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1000-9

Keywords

Navigation