Skip to main content
Log in

Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cotton (Gossypium hirsutum L.) fibre initial cells undergo a rapid cellular re-programming around anthesis to form the long cellulose fibres prized for textile manufacture. On the day of anthesis the cotton fibre initial cells balloon out from the ovule surface and so are clearly distinguished from adjacent epidermal pavement cells. To enhance our understanding of the molecular processes that determine which cells become fibres and why adjacent epidermal cells remain in a different developmental state we studied the expression profiles of the two respective cell types. Using laser-capture microdissection, coupled with an in vitro RNA amplification system, we used cDNA microarray slides to profile the gene expression in expanding fibre initials compared to the non-expanding epidermal cells at an early stage just after the fibre initials are discernable. Except for a few regulatory genes, the genes that are up-regulated in the cotton fibre initials relative to epidermal cells predominantly encode proteins involved in generating the components for the extra cell membrane and primary cell wall needed for the rapid cell expansion of the initials. This includes synthesis of enzymes and cell wall proteins, carbohydrates, and lipids. An analysis of single channel fluorescence levels confirmed that these classes of genes were also the most highly expressed genes in fibre initials. Genes involved in DNA metabolism were also well represented in the expanding fibre cell, consistent with the limited endoreduplication we previously reported to occur in fibre initial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACC:

1-Aminocyclopropane-1-carboxylic acid

aRNA:

Amplified RNA

DP16:

Cultivar Deltapine 16

dpa:

Days post anthesis

GEO:

Gene expression omnibus

GO:

Gene ontology

LCM:

Laser-capture microdissection

SAM:

S-adenosyl-l-methionine

References

  • Abe M, Takahashi T, Komeda Y (1999) Cloning and characterization of an L1 layer-specific gene in Arabidopsis thaliana. Plant Cell Physiol 40:571–580

    PubMed  CAS  Google Scholar 

  • Arpat AB, Waugh M, Sullivan PJ, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing RA, Wilkins TA (2004) Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol 54:911–929

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Ben-Nissan G, Lee J-Y, Borohov A, Weiss D (2004) GIP, a Petunia hybrida GA-induced cysteine-rich protein: a possible role in shoot elongation and transition to flowering. Plant J 37:229–238

    PubMed  CAS  Google Scholar 

  • Berlin JD (1986) The outer epidermis of the cotton seeds. In: Mauney JR, Stewart JMcD (eds) Cotton physiology. The Cotton Foundation, Memphis, pp 375–414

    Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis in Arabidopsis. Plant J 42:111–123

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  PubMed  CAS  Google Scholar 

  • Day RC, Grossniklaus U, Macknight RC (2005) Be more specific! Laser-assisted microdissection of plant cells. Trends Plant Sci 8:397–406

    Article  CAS  Google Scholar 

  • Durso ND, Cyr RJ (1994) Beyond translational duty: elongation factor 1 and the cytoskeleton. Protoplasma 180:99–105

    Article  CAS  Google Scholar 

  • Gialvalis S, Seagull RW (2001) Plant hormones alter fiber initiation in unfertilized, cultured ovules of Gossypium hirsutum. J Cotton Sci 5:252–258

    CAS  Google Scholar 

  • Graves DA, Stewart JM (1988) Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells. Planta 175:254–258

    Article  Google Scholar 

  • Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, Fu Q, Liu D, Luo JC, Zhu YX (2003) Isolation and analysis of genes preferentially expressed during early cotton fibre development by subtractive PCR and cDNA array. Nucleic Acids Res 31:2534–2543

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Triplett BA (2004) Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta 218:516–524

    Article  PubMed  CAS  Google Scholar 

  • Lee JJ, Hassan OSS, Gao W, Wei NE, Kohel RJ, Chen X-Y, Payton P, Sze S-H, Stelly DM, Chen ZJ (2006) Developmental and gene expression analyses of a cotton naked seed mutant. Planta 223:418–432

    Article  PubMed  CAS  Google Scholar 

  • Lee MM, Schiefelbein J (2002) Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611–618

    Article  PubMed  CAS  Google Scholar 

  • Li CH, Zhu YQ, Meng YL, Wang JW, Xu KX, Zhang TZ, Chen XY (2002) Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Sci 163:1113–1120

    Article  CAS  Google Scholar 

  • Liu D, Zhang X, Tu L, Zhu L, Guo X (2006) Isolation by suppression-subtractive hybridisation of genes preferentially expressed during early and late fiber development stages in cotton. Mol Biol 40:741–749

    Article  CAS  Google Scholar 

  • Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto K, Takahashi T (2006) Characterisation of the class IV homeodomain-leucine zipper gene family in Arabidopsis. Plant Physiol 141:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    Article  PubMed  CAS  Google Scholar 

  • Orford SJ, Timmis JN (1998) Specific expression of an expansin gene during elongation of cotton fibres. BBA Genet Struct Exp 1398:342–346

    CAS  Google Scholar 

  • Polacek DC, Passerini AG, Shi C, Francesco NM, Manduchi E, Grant GR, Powell S, Bischof H, Winkler H, Stoeckert CJ Jr, Davies PF (2003) Fidelity of enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA. Physiol Genomics 13:147–156

    PubMed  CAS  Google Scholar 

  • Rahman H (2006) Number and weight of cotton lint fibres: variation due to high temperatures in the field. Aust J Agric Res 57:583–590

    Article  Google Scholar 

  • Ramsey JC, Berlin JD (1976) Ultrastructure of early stages of cotton fiber differentiation. Bot Gaz 137:11–19

    Article  Google Scholar 

  • Ravanel S, Gakiere B, Job G, Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95:7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    Article  PubMed  CAS  Google Scholar 

  • Ruan YL, Llewellyn DJ, Furbank RT (2001) The control of single-celled cotton fibre elongation by developmentally reversible gating of plasmodesmata and co-ordinated expression of sucrose and K+ transporters and expansin. Plant Cell 13:47–60

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Shi Y-H, Zhu S-W, Mao X-Z, Feng J-X, Qin Y-M, Zhang L, Cheng J, Wei L-P, Wang Z-Y, Zhu Y-X (2006) Transcript profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18:651–664

    Article  PubMed  CAS  Google Scholar 

  • Stewart JM (1975) Fibre initiation on the cotton ovule (Gossypium hirsutum). Am J Bot 62:723–730

    Article  Google Scholar 

  • Szymanski DB, Marks MD (1998) GLABROUS1 Overexpression and TRIPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell 10:2047–2062

    Article  PubMed  CAS  Google Scholar 

  • Taliercio E, Hendrix B, Stewart JM (2005) DNA content and expression of genes related to cell cycling in developing Gossypium hirsutum (Malvaceae) fibers. Am J Bot 92:1942–1947

    CAS  Google Scholar 

  • Tiwari SC, Wilkins TA (1995) Cotton (Gossypium hirsutum) seed trichomes expand via a diffuse growing mechanism. Can J Bot 73:746–757

    Google Scholar 

  • Van’t Hof J (1999) Increased nuclear DNA content in developing cotton fibre cells. Am J Bot 86:776–779

    Article  PubMed  Google Scholar 

  • Wilkins TA, Arpat AB (2005) The cotton fiber transcriptome. Physiol Plant 124:295–300

    Article  CAS  Google Scholar 

  • Wilson DL, Buckley MJ, Helliwell CA, Wilson IW (2003) New normalization methods for cDNA microarray data. Bioinformatics 19:1325–1332

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Llewellyn DJ, Dennis ES (2002) A quick and easy method for isolating good-quality RNA from cotton (Gossypium hirsutum L.) tissues. Plant Mol Biol Rep 20:213–218

    Article  CAS  Google Scholar 

  • Wu Y, Rozenfeld S, Defferrard A, Ruggiero K, Udall JA, Kim HR, Llewellyn DJ, Dennis ES (2005) Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling. Mol Gen Genomics 274:477–493

    Article  CAS  Google Scholar 

  • Wu Y, Machado A, White RG, Llewellyn DJ, Dennis ES (2006) Identification of early genes expressed during cotton fibre initiation using cDNA microarrays. Plant Cell Physiol 47:107–127

    Article  PubMed  CAS  Google Scholar 

  • Yang JH, Thorne N (2003) Normalization for two-color cDNA microarray data. In: Goldstein D (ed) Science and statistics: a festschrift for Terry speed. IMS lecture notes, Monograph series vol. 40, Institute of Mathematical Statistics, Beachwood, pp 403–418

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP (2002) Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15

    Article  PubMed  Google Scholar 

  • Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze S-H, Stelly DM, Thaxton P, Triplett B, Town CD, Chen ZJ (2006) Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J 47:761–775

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Australian Cotton Research and Development Corporation and Cotton Seed Distributors, Wee Waa, NSW. We thank Todd Collins for his excellent technical assistance, the University of Western Australia for access to their laser capture microscope, and Gavin Kennedy for curation of the microarray data in the CSIRO Gena database. Iain Wilson, Glenn Stone, David Lovell, Rob Dunne, Peter Baker, and Maree O’Sullivan (CSIRO) provided valuable discussions and advice on the microarray analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny J. Llewellyn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2007_580_MOESM1_ESM.xls

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Llewellyn, D.J., White, R. et al. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226, 1475–1490 (2007). https://doi.org/10.1007/s00425-007-0580-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0580-5

Keywords

Navigation