Skip to main content

Advertisement

Log in

Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper

Planta Aims and scope Submit manuscript

Abstract

The Arabidopsis FRO2 gene encodes the iron deficiency-inducible ferric chelate reductase responsible for reduction of iron at the root surface; subsequent transport of iron across the plasma membrane is carried out by a ferrous iron transporter (IRT1). Genome annotation has identified seven additional FRO family members in the Arabidopsis genome. We used real-time RT-PCR to examine the expression of each FRO gene in different tissues and in response to iron and copper limitation. FRO2 and FRO5 are primarily expressed in roots while FRO8 is primarily expressed in shoots. FRO6 and FRO7 show high expression in all the green parts of the plant. FRO3 is expressed at high levels in roots and shoots, and expression of FRO3 is elevated in roots and shoots of iron-deficient plants. Interestingly, when plants are Cu-limited, the expression of FRO6 in shoot tissues is reduced. Expression of FRO3 is induced in roots and shoots by Cu-limitation. While it is known that FRO2 is expressed at high levels in the outer layers of iron-deficient roots, histochemical staining of FRO3-GUS plants revealed that FRO3 is predominantly expressed in the vascular cylinder of roots. Together our results suggest that FRO family members function in metal ion homeostasis in a variety of locations in the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FRO:

Ferric reductase oxidase

IRT1:

Iron-regulated transporter 1

NA:

Nicotianamine

RT-PCR:

Reverse transcription-polymerase chain reaction

References

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  PubMed  CAS  Google Scholar 

  • Bauer P, Thiel T, Klatte M, Bercezky Z, Brumbarova T, Hell R, Grosse I (2004) Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol 136:4169–4183

    Article  PubMed  CAS  Google Scholar 

  • Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN (2003) A gene expression map of the Arabidopsis root. Science 302:1956–1960

    Article  PubMed  CAS  Google Scholar 

  • Brüggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta 190:151–155

    Article  Google Scholar 

  • Callis J, Carpenter T, Sun CW, Vierstra RD (1995) Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139:921–939

    PubMed  CAS  Google Scholar 

  • Chanock SJ, el Benna J, Smith RM, Babior BM (1994) The respiratory burst oxidase. J Biol Chem 269:24519–24522

    PubMed  CAS  Google Scholar 

  • Claros M, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Cohen CK, Norvell WA, Kochian LV (1997) Induction of the root cell plasma membrane ferric reductase. An exclusive role for Fe and Cu. Plant Physiol 114:1061–1069

    PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2004) The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16:3400–3412

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Campbell N, Grotz N, Prichard CL, Guerinot ML (2003) Overexpression of the FRO2 iron reductase confers tolerance to growth on low iron and uncovers post-transcriptional control. Plant Physiol 133:1102–1110

    Article  PubMed  CAS  Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Bosler Eisley R, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, von Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    PubMed  CAS  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JL, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446

    Article  PubMed  CAS  Google Scholar 

  • Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272:13786–13792

    Article  PubMed  CAS  Google Scholar 

  • Groom QJ, Torres MA, Fordham-Skelton AP, Hammond-Kosack KE, Robinson NJ, Jones JDG (1996) rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene. Plant J 10:515–522

    Article  PubMed  CAS  Google Scholar 

  • de la Guardia MD, Alcantara E (1996) Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron-deficiency and leaf age. J Exp Bot 47:669–675

    Article  Google Scholar 

  • Hangarter RP, Stasinopoulos TC (1991) Effect of Fe-catalyzed photooxidation of EDTA on root growth in plant culture media. Plant Physiol 96:843–847

    PubMed  CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551

    PubMed  CAS  Google Scholar 

  • Henriques R, Jasik J, Klein M, Martinoia E, Feller U, Schell J, Pais MS, Koncz C (2002) Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol 50:587–597

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    Article  PubMed  CAS  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei Z-M, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JDG, Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22:2623–2633

    Article  PubMed  CAS  Google Scholar 

  • Li L, Cheng X, Ling HQ (2004) Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato. Plant Mol Biol 54:125–36

    Article  PubMed  Google Scholar 

  • Martins LJ, Jensen LT, Simons JR, Keller GL, Winge DR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273:23716–23721

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Lee DK, Vu TH, Tej SS, Edberg SB, Matvienko M, Tindell LD (2004) Arabidopsis MPSS: an online resource for quantitative expression analysis. Plant Physiol 135

  • Newman T, de Bruijn FJ, Green P, Keegstra K, Kende H, McIntosh L, Ohlrogge J, Raikhel N, Somerville S, Thomashow M, Retzel E, Somerville C (1994) Genes galore: A summary of methods for accessing results from large-scale partial sequencing of anonymous Arabidopsis cDNA clones. Plant Physiol 106:1241–1255

    Article  PubMed  CAS  Google Scholar 

  • Robinson NJ, Sadjuga, Groom QJ (1997) The froh gene family from Arabidopsis thaliana: Putative iron-chelate reductases. Plant Soil 196:245–248

    Article  CAS  Google Scholar 

  • Robinson NJ, Proctor CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sadjuga MR, Procter CM, Robinson NJ, Groom QJ (1997) Isolation and analysis of genes encoding novel NAD(P)H oxidases from Arabidopsis thaliana: their putative role(s) as ferric/cupric reductases. J Exp Bot 48(Suppl):101

    Google Scholar 

  • Saleeba JA, Guerinot ML (1995) Induction of ferric reductase activity in response to iron deficiency in Arabidopsis. Biometals 8:297–300

    Article  CAS  Google Scholar 

  • Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat J-F, Curie C, von Wiren N (2005) A putative function of the Arabidopsis Fe-phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol EPub March 7, 2005

  • Shingles R, North M, McCarty RE (2002) Ferrous iron transport across chloroplast inner envelope membranes. Plant Physiol 128:1022–1030

    Article  PubMed  CAS  Google Scholar 

  • Tiffin LO (1970) Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol 45:280–283

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Onouchi H, Hamada S, Machida C, Hammond-Kosack KE, Jones JDG (1998) Six Arabidopsis thaliana homologues of the human respiratory burst oxidase (gp91phox). Plant J 14:365–370

    Article  PubMed  CAS  Google Scholar 

  • Torres MA, Dangl JL, Jones JD (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci USA 99:517–522

    Article  PubMed  CAS  Google Scholar 

  • Varotto C, Maiwald D, Pesaresi P, Jahns P, Francesco S, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31:589–599

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and plant growth. Plant Cell 14:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Briat J-F, Curie C (2003) Dual regulation of the Arabidopsis high affinity root iron uptake system by local and long-distance signals. Plant Physiol 132:796–804

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362

    Article  PubMed  CAS  Google Scholar 

  • Waters BM, Blevins DG, Eide DJ (2002) Characterization of FRO1, a pea ferric-chelate reductase involved in root iron acquisition. Plant Physiol 129:85–94

    Article  PubMed  CAS  Google Scholar 

  • WHO (2004) (http://www.who.int/nut/malnutrition_worldwide.htm#ida)

  • Wintz H, Fox T, Wu Y-Y, Feng V, Chen W, Chang H-S, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Lim J, Dale JM, Chen H, Shinn P, Palm CJ, Southwick AM, Wu HC, Kim C, Nguyen M, Pham P, Cheuk R, Karlin-Newmann G, Liu SX, Lam B, Sakano H, Wu T, Yu G, Miranda M, Quach HL, Tripp M, Chang CH, Lee JM, Toriumi M, Chan MMH, Tang CC, Onodera CS, Deng JM, Akiyama K, Ansari Y, Arakawa T, Banh J, Banno F, Bowser L, Brooks S, Carninci P, Chao Q, Choy N, Enju A, Goldsmith AD, Gurjal M, Hansen NF, Hayashizaki Y, Johnson-Hopson C, Hsuan VW, Iida K, Karnes M, Khan S, Koesema E, Ishida J, Jiang PX, Jones T, Kawai J, Kamiya A, Meyers C, Nakajima M, Narusaka M, Seki M, Sakurai T, Satou M, Tamse R, Vaysberg M, Wallender EK, Wong C, Yamamura Y, Yuan S, Shinozaki K, Davis RW, Theologis A, Ecker JR (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842–846

    Article  PubMed  CAS  Google Scholar 

  • Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10:835–844

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Brett Lahner and David Salt (both Purdue University, IN, USA) for ICP-MS analysis. We are grateful to Steve Theg (University of California at Davis, USA) for help with chloroplast targeting predictions. We thank the Arabidopsis Stock Center at Ohio State University for providing cDNA clones. We thank Mary Lou Guerinot, Jeeyon Jeong (both Dartmouth College, Hanover, NH, USA), Loubna Kerkeb and Jennifer Barwick (both University of South Carolina, Columbia, SC, USA) for critical reading of this manuscript. The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 2001-35100-10752 and by NSF grant number IBN-0344305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin L. Connolly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, I., Campbell, N.H., Ash, J.S. et al. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223, 1178–1190 (2006). https://doi.org/10.1007/s00425-005-0165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0165-0

Navigation