Skip to main content
Log in

Primary metabolic pathways and signal transduction in sunflower (Helianthus annuus L.): comparison of transcriptional profiling in leaves and immature embryos using cDNA microarrays

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The early stage of embryo development is a critical step in plant production. To identify genes with potential roles in the early sunflower seed development, a cDNA microarray approach was employed. We developed a thematic cDNA microarray containing clones representing high sequence similarities with known or predicted Arabidopsis genes implicated in different metabolic and signal transduction pathways. This 800-element cDNA array was used to compare the expression patterns in leaves and immature embryos (2 mm and 6 mm). Statistical analysis, using two-step ANOVA, revealed that 143 cDNA clones can be considered as differentially expressed. Of these, 62 clones were found to be up-regulated in leaves, 81 in embryos whereas only seven clones displayed increased level of mRNA in the 6 mm embryos when compared with 2 mm embryos. The differentially expressed clones are distributed among many metabolic and signal transduction pathways. For example, genes related to fatty acid metabolism and amino acid biosynthesis exhibited preferential expression patterns in immature embryos. Also, clones potentially encoding enzymes involved in the metabolism of ascorbate and aldarate, pyruvate, propanoate and inositol, and citrate cycle were found to be up-regulated in embryos. In contrast, cDNA clones putatively involved in energy metabolism were more abundant in leaves than embryos. Clones encoding potential signal transduction components including receptors, protein kinases, protein phosphatases, and transcription factors were also identified, with preferential expression profiles in immature embryos. The expression patterns derived from this study provide initial characterization of metabolic pathways and signalling transduction networks occurring in the early stage of sunflower seed development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tags

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  • Ben C, Hewezi T, Jardinaud MF, Bena F, Ladouce N, Moretti S, Tamborindeguy C, Liboz T, Petitprez M, Gentzbittel L (2005) Comparative analysis of early embryonic sunflower cDNA libraries. Plant Mol Biol 57:255–270

    Article  PubMed  Google Scholar 

  • Boudolf V, Barrôco R, Engler J, Verkest A, Beeckman T, Naudts M, Inzé D, De Veylder L (2004) B1-type cyclin-dependent kinases are essential for the formation of stomatal complexes in Arabidopsis thaliana. Plant Cell 16:945–955

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    PubMed  CAS  Google Scholar 

  • Browse J, Slack CR (1985) Fatty acid synthesis in plastids from maturing safflower and linseed cotyledons. Planta 166:74–80

    Article  CAS  Google Scholar 

  • Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590

    Article  PubMed  CAS  Google Scholar 

  • Chiang H-H, Dandekar AM (1995) Regulation of proline accumulation in Arabidopsis thaliana (L.) Heynh during development and in response to desiccation. Plant Cell Environ 18:1280–1290

    Article  CAS  Google Scholar 

  • De Veylder L, Joubès J, Inzé D (2003) Plant cell cycle transitions. Curr Opin Plant Biol 6:536–543

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Beales J, Nagamura Y, Sasaki T (1999) Arabidopsis-rice: Will colinearity allow gene prediction across the eudicot–monocot divide? Genome Res 9:825–829

    Article  PubMed  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  Google Scholar 

  • Dornelas MC, van Lammeren AM, Kreis M (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J 21:419–429

    Article  PubMed  CAS  Google Scholar 

  • Eastmond PJ, Dennis DT, Rawsthorne S (1997) Evidence that a malate/inorganic phosphate exchange translocator imports carbon across the leucoplast envelope for fatty acid synthesis in developing castor seed endosperm. Plant Physiol 114:851–856

    PubMed  CAS  Google Scholar 

  • Fulton T, van der Hoeven R, Eannetta N, Tanksley S (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Gabriel KR (1971) The biplot graphic of matrices with application to principal components analysis. Biometrika 58:453–467

    Article  Google Scholar 

  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM (1992) Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  PubMed  CAS  Google Scholar 

  • Harada JJ (2001) Role of Arabidopsis LEAFY COTYLEDON genes in seed development. J Plant Physiol 158:405–409

    Article  CAS  Google Scholar 

  • Hardi DG (1999) Plant protein serine/threonine kinases: classification and function. Annu Rev Plant Physiol Plant Mol Biol 50:97–131

    Article  PubMed  Google Scholar 

  • Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Hasenfratz MP, Tsou CL, Wilkins TA (1995) Expression of two related vacuolar H+ -ATPase 16 kD proteolipid genes is differentially regulated in a tissue specific manner. Plant Physiol 108:1395–1404

    Article  PubMed  CAS  Google Scholar 

  • Horvath D, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–124

    Article  PubMed  CAS  Google Scholar 

  • Hua X-J, van de Cotte B, Van Montagu M, Verbruggen N (1997) Developmental regulation of pyrroline-5-carboxylate reductase gene expression in Arabidopsis. Plant Physiol 114:1215–1224

    Article  PubMed  CAS  Google Scholar 

  • Hunter BG, Beatty MK, Singletary GW, Hamaker BR, Dilkes BP, Larkins BA, Jung R (2002) Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14:2591–2612

    Article  PubMed  CAS  Google Scholar 

  • Imaizumi N, Ku MSB, Ishihara K, Samejima M, Kaneko S, Matsuoka M (1997) Characterization of the gene for pyruvate,orthophosphate dikinase from rice, a C3 plant, and comparison of structure and expression between C3 and C4 genes for this protein. Plant Mol Biol 34:701–716

    Article  PubMed  CAS  Google Scholar 

  • Imsande J, Berkemeyer M, Scheibe R, Schumann U, Gietl C, Palmer RG (2001) A soybean plastid-targeted NADH-malate dehydrogenase: cloning and expression analyses. Am J Bot 88:2136–2142

    Article  CAS  Google Scholar 

  • Jonak C, Hirt H (2002) Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci 10:457–461

    Article  Google Scholar 

  • Kendziorski CM, Zhang Y, Lan H, Attie AD (2003) The efficiency of pooling mRNA in microarray experiments. Biostatistics 4:465–477

    Article  PubMed  CAS  Google Scholar 

  • Kerr MK (2003) Experimental design to make the most of microarray studies. Methods Mol Biol 224:137–147

    PubMed  CAS  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2000) Analysis of variance for gene expression microarray data. J Comput Biol 7:819–837

    Article  PubMed  CAS  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  PubMed  CAS  Google Scholar 

  • Kwong RW, Anhthu QB, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 − Δ ΔC T method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–409

    Article  PubMed  CAS  Google Scholar 

  • Miller SS, Driscoll BT, Gregerson RG, Gantt JS, Vance CP (1998) Alfalfa malate dehydrogenaase (MDH): molecular cloning and characterization of five different forms reveals a unique nodule-enhanced MDH. Plant J 15:173–184

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, De Veylder L, Van Montagu M, Inzé D (1999) Cyclin-dependent kinases and cell division in higher plants—the nexus. Plant Cell 11:509–521

    Article  PubMed  CAS  Google Scholar 

  • Peng X, Wood CL, Blalock EM, Chen KC, Landfield PW, Stromberg AJ (2003) Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinform 4:26

    Article  Google Scholar 

  • Perera I, Li X, Sze H (1995) Several genes encode nearly identical 16 kD proteolipids of the vacuolar H+-ATPase from Arabidopsis thaliana. Plant Mol Biol 29:227–244

    Article  PubMed  CAS  Google Scholar 

  • Pittelkow YE, Wilson SR (2003) Visualization of gene expression data—the GE-biplot, the chip-plot and the gene-plot. Stat Appl Genet Mol Biol 2:1–17

    Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  PubMed  CAS  Google Scholar 

  • Rossberg M, Theres K, Acarkan A, Herrero R, Schmitt T, Schumacher K, Schmitz G, Schmidt R (2001) Comparative sequence analysis reveals extensive microcolinearity in the lateral suppressor regions of the tomato, Arabidopsis, and Capsella genomes. Plant Cell 13:979–988

    Article  PubMed  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206

    Article  PubMed  CAS  Google Scholar 

  • Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175

    Article  PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Manners JM, Anderson JP, Simpson B, Wilson I, Somerville SC, Maclean DJ (2003) Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol 132:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Nemhauser JL, McColl A, Roe JL, Feldmann KA, Zambryski PC (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs. Development 124:4481–4491

    PubMed  CAS  Google Scholar 

  • Smith DR, Walker JC (1996) Plant protein phosphatases. Annu Rev Plant Physiol Plant Mol Biol 47:101–125

    Article  PubMed  CAS  Google Scholar 

  • Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano X, Su Y, Nakagami H, Shinmyo A, Doonan JH, Sekine M, Murray JAH (2001) Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. Plant Physiol 126:1214–1223

    Article  PubMed  CAS  Google Scholar 

  • Suh M, Kim MJ, Hur C, Bae JM, Park YI, Chung C, Kang C, Ohlrogg JB (2003) Comparative analysis of expressed sequence tags from Sesamum indicum and Arabidopsis thaliana developing seeds. Plant Mol Biol 52:1107–1123

    Article  PubMed  Google Scholar 

  • Sun J, Ke J, Johnson JL, Nikolau BJ, Wurtele ES (1997) Biochemical and molecular biological characterization of CAC2, the Arabidopsis thaliana gene coding for the biotin carboxylase subunit of the plastidic acetyl-coenzyme A carboxylase. Plant Physiol 115:1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Plant Cell Membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–690

    Article  PubMed  CAS  Google Scholar 

  • Tamborindeguy C, Ben C, Liboz T, Gentzbittel L (2004) Sequence evaluation of four specific cDNA libraries for developmental genomics of sunflower. Mol Genet Genome 271:367–375

    Article  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequences of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Thelen JJ, Miernyk JA, Randall DD (1998) Partial purification and characterization of the maize mitochondrial pyruvate dehydrogenase complex. Plant Physiol 116:1443–1450

    Article  PubMed  CAS  Google Scholar 

  • Thelen JJ, Muszynski MG, David NR, Luethy MH, Elthon TE, Miernyk JA, Randall D (1999) The dihydrolipoamide S-acetyltransferase subunit of the mitochondrial pyruvate dehydrogenase complex from maize contains a single lipoyl domain. J Biol Chem 274:21769–21775

    Article  PubMed  CAS  Google Scholar 

  • Vance CP (1997) The molecular biology of N metabolism. In: Dennis DT, Turpin DH, Lefebrre DD, Layzell DB (eds) Plant metabolism, 2nd edn. Longman Scientific, London, pp 449–477

    Google Scholar 

  • Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res 17:2362–2362

    Article  PubMed  CAS  Google Scholar 

  • Wellmer f, Riechmann JL, Alves-Ferreira M, Meyerowitz EM (2004) Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16:1314–1326

    Article  PubMed  CAS  Google Scholar 

  • Wobus U, Weber H (1999) Sugars as signal molecules in plant seed development. Biol Chem 380:937–944

    Article  PubMed  CAS  Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennet L, Hamade H, Bushel P, Afshira C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8:625–637

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Génoplante GOP-HG01 programme. We thank Cécile Donnadieu Tonon at “Centre de resources-Genotypage, Sequencage” of Toulouse for advice and access to microarray equipments. We also thank our colleagues in sunflower Génoplante project for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Gentzbittel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hewezi, T., Petitprez, M. & Gentzbittel, L. Primary metabolic pathways and signal transduction in sunflower (Helianthus annuus L.): comparison of transcriptional profiling in leaves and immature embryos using cDNA microarrays. Planta 223, 948–964 (2006). https://doi.org/10.1007/s00425-005-0151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0151-6

Keywords

Navigation