Skip to main content

Advertisement

Log in

Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The ANR1 MADS-box gene in Arabidopsis thaliana (L.) Heynh. has previously been identified as a key regulator of lateral root growth in response to signals from external nitrate (NO 3 ). We have used quantitative real-time PCR to investigate the responsiveness of ANR1 and 11 other root-expressed MADS-box genes to fluctuations in the supply of N, P and S. ANR1 expression in roots of hydroponically grown Arabidopsis plants was specifically regulated by changes in the N supply, being induced by N deprivation and rapidly repressed by N re-supply. This pattern of N responsiveness differs from the NO 3 -inducibility of ANR1 previously observed in Arabidopsis root cultures [H.M. Zhang and B.G. Forde (1998) Science 279:407–409]. Seven of the other MADS-box genes responded to N in a manner similar to ANR1, but less strongly, while four (AGL12, AGL17, AGL18 and AGL79) were unaffected. Six of the N-regulated genes (ANR1, AGL14, AGL16, AGL19, SOC1 and AGL21) belong to just two clades within the type II MADS-box lineage, while the other two (AGL26 and AGL56) belong to the poorly characterized type I lineage. Only SOC1 was additionally found to respond to changes in the P and S supply, suggesting a possible role in a general response to nutrient stress. Studies with an ANR1 transposon-insertion mutant provided no evidence for regulatory interactions between ANR1 and the other root-expressed MADS-box genes. The implications of the current data for our understanding of the role of ANR1 and other MADS box genes in the nutritional regulation of lateral root growth are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

DIG:

Digoxigenin

KO:

Knock-out

NAA:

1-naphthalene acetic acid

qRT-PCR:

Quantitative real-time PCR

SSC:

Saline sodium citrate

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000a) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS, de Pouplana LR, Martinez-Castilla L, Yanofsky MF (2000b) An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molec Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  PubMed  CAS  Google Scholar 

  • Burgeff C, Liljegren SJ, Tapia-Lopez R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214:365–372

    Article  PubMed  CAS  Google Scholar 

  • Cerezo M, Tillard P, Filleur S, Munos S, Daniel-Vedele F, Gojon A (2001) Major alterations of the regulation of root NO 3 uptake are associated with the mutation of NRT2.1 and NRT2.2 genes in Arabidopsis. Plant Physiol 127:262–271

    Article  PubMed  CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–868

    Article  PubMed  CAS  Google Scholar 

  • Czechowski T, Bari RP, Stitt M, Scheible W-R, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379

    Article  PubMed  CAS  Google Scholar 

  • De Bodt S, Raes J, Van de Peer YV, Theissen G (2003) And then there were many: MADS goes genomic. Trends Plant Sci 8:475–483

    Article  PubMed  CAS  Google Scholar 

  • Dodou E, Treisman R (1997) The Saccharomyces cerevisiae MADS-box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol Cell Biol 17:1848–1859

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. BRL Focus 12:13–15

    Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley I The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24: 1189–1202

    Article  CAS  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  • Filleur S, Daniel-Vedele F (1999) Expression analysis of a high-affinity nitrate transporter isolated from Arabidopsis thaliana by differential display. Planta 207:461–469

    Article  PubMed  CAS  Google Scholar 

  • Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, Gojon A, Daniel-Vedele F (2001) An Arabidopsis T-DNA mutant affected in NRT2 genes is impaired in nitrate uptake. FEBS Lett 489:220–224

    Article  PubMed  CAS  Google Scholar 

  • Gansel X, Munos S, Tillard P, Gojon A (2001) Differential regulation of the NO 3 and NH +4 transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  PubMed  CAS  Google Scholar 

  • Köhler C, Hennig L, Spillane C, Pien S, Gruissem W, Grossniklaus U (2003) The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev 17:1540–1553

    Article  PubMed  CAS  Google Scholar 

  • Komeda Y (2004) Genetic regulation of time to flower in Arabidopsis thaliana. Annu Rev Plant Biol 55:521–535

    Article  PubMed  CAS  Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO 3 uptake systems by N- and C-status of Arabidopsis plants. Plant J 18:509–519

    Article  PubMed  CAS  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wiren N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: Functional importance and relation with hexokinase. Plant Cell 15:2218–2232

    Article  PubMed  CAS  Google Scholar 

  • Marks MD, West J, Weeks DP (1987) The relatively large ß-tubulin gene family of Arabidopsis contains a member with an unusual transcribed 5’-noncoding sequence. Plant Mol Biol 10:91–104

    Article  CAS  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yarnaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  PubMed  CAS  Google Scholar 

  • Messenguy F, Dubois E (2003) Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316:1–21

    Article  PubMed  CAS  Google Scholar 

  • Nam J, Kim J, Lee S, An G, Ma H, Nei M (2004) Type I MADS-box genes have experienced faster birth-and-death evolution than type II MADS-box genes in angiosperms. Proc Natl Acad Sci USA 101:1910–1915

    Article  PubMed  CAS  Google Scholar 

  • Nazoa P, Vidmar JJ, Tranbarger TJ, Mouline K, Damiani I, Tillard P, Zhuo DG, Glass ADM, Touraine B (2003) Regulation of the nitrate transporter gene AtNRT2.1 in Arabidopsis thaliana: responses to nitrate, amino acids and developmental stage. Plant Mol Biol 52:689–703

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  PubMed  CAS  Google Scholar 

  • Orsel M, Krapp A, Daniel-Vedele F (2002) Analysis of the NRT2 nitrate transporter family in Arabidopsis Structure and gene expression. Plant Physiol 129:886–896

    Article  PubMed  CAS  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:New openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    Article  PubMed  CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS-box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  PubMed  CAS  Google Scholar 

  • Sambrook H, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  PubMed  CAS  Google Scholar 

  • Smith FW, Ealing PM, Dong B, Delhaize E (1997) The cloning of two Arabidopsis genes belonging to a phosphate transporter family. Plant J 11:83–92

    Article  PubMed  CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Feil R (1999) Lateral root frequency decreases when nitrate accumulates in tobacco transformants with low nitrate reductase activity:consequences for the regulation of biomass partitioning between shoots and root. Plant Soil 215:143–153

    Article  CAS  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JDG (1999) Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: A tool for functional genomics. Plant Cell 11:1841–1852

    Article  PubMed  CAS  Google Scholar 

  • Wang RC, Guegler K, LaBrie ST, Crawford NM (2000) Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491–1509

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359

    Article  PubMed  CAS  Google Scholar 

  • Wang YH, Garvin DF, Kochian LV (2002) Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol 130:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Wang RC, Okamoto M, Xing XJ, Crawford NM (2003) Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, iron, and sulfate metabolism. Plant Physiol 132:556–567

    Article  PubMed  CAS  Google Scholar 

  • Wang RC, Tischner R, Gutierrez RA, Hoffman M, Xing XJ, Chen MS, Coruzzi G, Crawford NM (2004) Genomic analysis of the nitrate response using a nitrate reductase-null mutant of Arabidopsis. Plant Physiol 136:2512–2522

    Article  PubMed  CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kishimoto N, Kikuchi S, Yamagishi M, Osaki M (2003) Transcriptomic analysis of metabolic changes by stress in rice plant roots. Plant Cell Environ 26:1515–1523

    Article  CAS  Google Scholar 

  • Wu P, Ma LG, Hou XL, Wang MY, Wu YR, Liu FY, Deng XW (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132:1260–1271

    Article  PubMed  CAS  Google Scholar 

  • Yang SH, Galanis A and Sharrocks AD (1999) Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol 19:4028–4038

    PubMed  CAS  Google Scholar 

  • Zhang HM, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  PubMed  CAS  Google Scholar 

  • Zhang HM, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  PubMed  CAS  Google Scholar 

  • Zhuo D, Okamoto M, Vidmar JJ, Glass ADM (1999) Regulation of a putative high-affinity nitrate transporter (NRT2;1At) in roots of Arabidopsis thaliana. Plant J 17:563–568

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Wolf-Rüdiger Scheible, MPI Golm for help with designing qRT-PCR primers and Dr Frank Smith, CSIRO Plant Industry, Brisbane for providing the AtPHT1;2 and SULTR1;1 cDNA clones. The research was funded by Yara International ASA and by grants from the Biotechnology and Biological Sciences Research Council of the United Kingdom and the Australian Grains Research and Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Forde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, Y., Filleur, S., Rahman, A. et al. Nutritional regulation of ANR1 and other root-expressed MADS-box genes in Arabidopsis thaliana . Planta 222, 730–742 (2005). https://doi.org/10.1007/s00425-005-0020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0020-3

Keywords

Navigation