Skip to main content
Log in

Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Miscanthus × giganteus (Greef & Deuter ex Hodkinson & Renvoize) is unique among C4 species in its remarkable ability to maintain high photosynthetic productivity at low temperature, by contrast to the related C4 NADP-malic enzyme-type species Zea mays L. In order to determine the in vivo physiological basis of this difference in photosynthesis, water vapor and CO2 exchange and modulated chlorophyll fluorescence were simultaneously monitored on attached leaf segments from plants grown and measured at 25/20°C or 14/11°C (day/night temperature). Analysis of the response of photosynthesis to internal CO2 concentration suggested that ribulose bisphosphate carboxylase/oxygenase (Rubisco) and/or pyruvate orthophosphate dikinase (PPDK) play a more important role in determining the response to low temperature than does phosphoenolpyruvate carboxylase (PEPc). For both species at both temperatures, the linear relationship between operating efficiency of whole-chain electron transport through photosystem II (ΦPSII) and the efficiency of CO2 assimilation (ΦCO2) was unchanged and had a zero intercept, suggesting the absence of non-photosynthetic electron sinks. The major limitation at low temperature could not be solely at Rubisco or at any other point in the Calvin cycle, since this would have increased leakage of CO2 to the mesophyll and increased ΦPSIICO2. This in vivo analysis suggested that maintenance of high photosynthetic rates in M. × giganteus at low temperature, in contrast to Z. mays, is most likely the result of different properties of Rubisco and/or PPDK, reduced susceptibility to photoinhibition, and the ability to maintain high levels of leaf absorptance during growth at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a, b
Fig. 3a, b
Fig. 4a–d

Similar content being viewed by others

References

  • Aguilera C, Stirling CM, Long SP (1999) Genotypic variation within Zea mays for susceptibility to and rate of recovery from chill-induced photoinhibition of photosynthesis. Physiol Plant 106:429–436

    Article  CAS  Google Scholar 

  • Andrews JR, Fryer MJ, Baker NR (1995) Characterization of chilling effects on photosynthetic performance of maize crops during early-season growth using chlorophyll fluorescence. J Exp Bot 46:1195–1203

    CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 355:1433–1446

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Long SP (1988) Photosynthesis and temperature, with particular reference to effects on quantum yield. In: Long SP, Woodward FI (eds) Plants and temperature: Society for Experimental Biology Symposium No. XXXXII. Company of Biologists, Cambridge, pp 347–375

  • Baker NR, Bradbury M, Farage PK, Ireland CR, Long SP (1989) Measurements of the quantum yield of carbon assimilation and chlorophyll fluorescence for assessment of photosynthetic performance of crops in the field. Philos Trans R Soc Lond B Biol Sci 323:295–308

    CAS  Google Scholar 

  • Baker NR, Nie G-Y, Ortizlopez A, Ort DR, Long SP (1990) Analysis of chill-induced depressions of photosynthesis in maize. In: Baltscheffsky M (ed) Current research in photosynthesis, vol IV. Kluwer, Dordrecht, pp 565–572

  • Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650

    Google Scholar 

  • Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–273

    CAS  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    CAS  Google Scholar 

  • Bullard MJ, Heath MC, Nixon PMI (1995) Shoot growth, radiation interception and dry matter production and partitioning during the establishment phase of Miscanthus sinensis ‘Giganteus’ grown at two densities in the U. K. Ann Appl Biol 126:365–378

    Google Scholar 

  • Cavaco AM, Silva AB, Arrabaça MC (2003) Effects of long-term chilling on growth and photosynthesis of the C4 gramineae Paspalum dilatatum. Physiol Plant 119:87–96

    CAS  Google Scholar 

  • Chinthapalli B, Murmu J, Raghavendra AS (2003) Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants. J Exp Bot 54:707–714

    Article  CAS  PubMed  Google Scholar 

  • Clifton-Brown JC, Long SP, Jørgensen U (2001) Miscanthus productivity. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 10–20

  • Collatz GJ, Ribascarbo M, Berry JA (1992) Coupled photosynthesis–stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

    Google Scholar 

  • Dai ZY, Ku MSB, Edwards GE (1993) C4 photosynthesis—the CO2-concentrating mechanism and photorespiration. Plant Physiol 103:83–90

    CAS  PubMed  Google Scholar 

  • Dai Z, Ku MSB, Edwards GE (1996) Oxygen sensitivity of photosynthesis and photorespiration in different photosynthetic types in the genus Flaveria. Planta 198:563–571

    CAS  Google Scholar 

  • Du Y-C, Nose A, Wasano K (1999) Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell Environ 22:317–324

    Article  CAS  Google Scholar 

  • Edwards GE, Baker NR (1993) Can CO2 assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis. Photosynth Res 37:89–102

    CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Fracheboud Y, Haldimann P, Leipner J, Stamp P (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea mays L.). J Exp Bot 50:1533–1540

    Article  CAS  Google Scholar 

  • Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol 116:571–580

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Chitty JA, Jenkins CLD, Taylor WC, Trevanion SJ, von Caemmerer S, Ashton AR (1997) Genetic manipulation of key photosynthetic enzymes in the C4 plant Flaveria bidentis. Aust J Plant Physiol 24:477–485

    CAS  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    CAS  Google Scholar 

  • Hodkinson TR, Renvoize SA (2001) Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bull 56:759–760

    Google Scholar 

  • Kingston-Smith AH, Harbinson J, WIlliams J, Foyer CH (1997) Effect of chilling on carbon assimilation, enzyme activation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol 114:1039–1046

    CAS  PubMed  Google Scholar 

  • Kubien DS, von Caemmerer S, Furbank RT, Sage R (2003) C4 photosynthesis at low temperature. A study using transgenic plants with reduced amounts of rubisco. Plant Physiol 132:1577–1585

    Article  CAS  PubMed  Google Scholar 

  • Laisk A, Edwards GE (1998) Oxygen and electron flow in C4 photosynthesis: Mehler reaction, photorespiration and CO2 concentration in the bundle sheath. Planta 205:632–645

    Article  CAS  Google Scholar 

  • Laisk A, Edwards GE (2000) A mathematical model of C4 photosynthesis: the mechanism of concentrating CO2 in NADP-malic enzyme type species. Photosynth Res 66:199–124

    Article  CAS  Google Scholar 

  • Lee AE, Staebler MA, Tollenaar M (2002) Genetic variation in physiological discriminators for cold tolerance—early autotrophic phase of maize development. Crop Sci 42:1919–1929

    Google Scholar 

  • Leipner J, Fracheboud Y, Stamp P (1999) Effect of growing season on the photosynthetic apparatus and leaf antioxidative defenses in two maize genotypes of different chilling tolerance. Environ Exp Bot 42:129–139

    Article  CAS  Google Scholar 

  • Leipner J, Basilidès A, Stamp P, Fracheboud Y (2000) Hardly increased oxidative stress after exposure to low temperature in chilling-acclimated and non-acclimated maize leaves. Plant Biol 2:243–252

    Article  CAS  Google Scholar 

  • Long SP (1983) C4 photosynthesis at low temperatures. Plant Cell Environ 6:345–363

    CAS  Google Scholar 

  • Long SP (1999) Environmental responses. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 215–249

  • Long SP, Beale CV (2001) Resource capture by Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. James & James, London, pp 10–20

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Hällgren J-E (1993) Measurement of CO2 assimilation by plants in the field and the laboratory. In: Hall DO, Scurlock JMO, Bolhàr-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment. Chapman and Hall, London, pp 129–167

  • Long SP, East TM, Baker NR (1983) Chilling damage to photosynthesis in young Zea mays. 1. Effects of light and temperature-variation on photosynthetic CO2 assimilation. J Exp Bot 34:177–188

    Google Scholar 

  • Long SP, Postl WF, Bolhàr-Nordenkampf HR (1993) Quantum yields for uptake of carbon-dioxide in C-3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189:226–234

    CAS  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Maroco JP, Ku MSB, Edwards GE (1997) Oxygen sensitivity of C4 photosynthesis: evidence from gas exchange and chlorophyll fluorescence analyses with different C4 subtypes. Plant Cell Environ 20:1525–1533

    Article  CAS  Google Scholar 

  • Maroco JP, Ku MSB, Edwards GE (2000) Utilization of O2 in the metabolic optimization of C4 photosynthesis. Plant Cell Environ 23:115–121

    Article  CAS  Google Scholar 

  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • McDermitt DK, Welles JM, Eckles RD (1993) Effects of temperature, pressure and water vapor on gas phase infrared absorption by CO2. Technical Report 116. Li-Cor, Lincoln, NE

  • Naidu SL, Moose SP, Al-Shoabi KA, Raines CA, Long SP (2003) Cold-tolerance of C4 photosynthesis in Miscanthus × giganteus—effects of cold on photosynthetic enzymes. Plant Physiol 132:1688–1697

    Article  CAS  PubMed  Google Scholar 

  • Nie G-Y, Baker NR (1991) Modifications to thylakoid composition during development of maize leaves at low growth temperatures. Plant Physiol 95:184–191

    CAS  Google Scholar 

  • Nie G-Y, Long SP, Baker NR (1992) The effects of development at sub-optimal growth temperatures on photosynthetic capacity and susceptibility to chilling-dependent photoinhibition in Zea mays. Physiol Plant 85:554–560

    Article  CAS  Google Scholar 

  • Nie G-Y, Robertson EJ, Fryer MJ, Leech RM, Baker NR (1995) Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant Cell Environ 18:1–12

    CAS  Google Scholar 

  • Ort DR, Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis? Curr Opin Plant Biol 5:193–198

    Article  CAS  PubMed  Google Scholar 

  • Pietrini F, Massacci A (1998) Leaf anthocyanin content changes in Zea mays L. grown at low temperature: significance for the relationship between the quantum yield of PS II and the apparent quantum yield of CO2 assimilation. Photosynth Res 58:213–219

    Article  CAS  Google Scholar 

  • Pittermann J, Sage RF (2000) Photosynthetic performance at low temperature of Bouteloua gracilis Lag., a high-altitude C4 grass from the Rocky Mountains, USA. Plant Cell Environ 23:811–823

    Article  CAS  Google Scholar 

  • Pittermann J, Sage R (2001) The response of the high altitude C4 grass Muhlenbergia montana (Nutt.) A. S. Hitchc. to long- and short-term chilling. J Exp Bot 52:829–838

    CAS  PubMed  Google Scholar 

  • Rodriguez JL, Davies WJ (1982) The effects of temperature and ABA on stomata of Zea Mays L. J Exp Bot 33:977–987

    CAS  Google Scholar 

  • Sage RF (1999) Why C4 photosynthesis? In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 3–16

  • Sage RF, Wedin DA, Li M (1999) The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage RF, Monson RK (eds) C4 plant biology. Academic Press, San Diego, pp 3–16

  • Siebke K, Ghannoum O, Conroy JP, Badger MR, von Caemmerer S (2003) Photosynthetic oxygen exchange in C4 grasses: the role of oxygen as electron acceptor. Plant Cell Environ 26:1963–1972

    CAS  Google Scholar 

  • Stirling CM, Nie G-Y, Aguilera C, Nugawela A, Long SP, Baker NR (1991) Photosynthetic productivity of an immature maize crop: changes in quantum yield of CO2 assimilation, conversion efficiency and thylakoid proteins. Plant Cell Environ 14:947–954

    CAS  Google Scholar 

  • Usuda H, Ku MSB, Edwards GE (1985) Influence of light intensity during growth on photosynthesis and activity of several key photosynthetic enzymes in a C4 plant (Zea mays). Physiol Plant 65:65–70

    Google Scholar 

  • van Kooten O, Snell JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO Publishing, Collingwood V. I. C., Australia, pp 91–122

  • von Caemmerer S, Furbank RT (2003) The C-4 pathway: an efficient CO2 pump. Photosynth Res 77:191–207

    Article  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Illinois Foundation Seeds Inc. (Champaign, IL, USA) for providing the Zea mays FR1064 seeds. We also thank John Szarejko for assistance with the gas-exchange measurements, and members of the Long laboratory for stimulating discussions. This work was supported in part by grants 2000-35100-9057 and 2002-35100-12424 from the United States Department of Agriculture National Research Initiative Competitive Grants Program to Stephen P. Long and Stephen P. Moose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawna L. Naidu.

Appendix

Appendix

List of symbols and abbreviations used

A :

CO2 uptake (photosynthesis; μmol m−2 s−1)

A 21% :

Photosynthesis at ambient O2 (μmol m−2 s−1)

A 1% :

Photosynthesis at low O2 (μmol m−2 s−1)

A sat :

Light-saturated photosynthesis (μmol m−2 s−1)

A/Ci:

Curve of photosynthetic response to Ci

A/Qabs:

Curve of photosynthetic response to Qabs

α:

Leaf absorptance

C a :

Ambient/external [CO2] (μl l−1)

C i :

Internal [CO2] (μl l−1)

C i, 370 :

Operating point of photosynthesis (μmol m−2 s−1)

CE:

Carboxylation efficiency of PEPc

[CO2]:

CO2 concentration (μl l−1)

ETR:

Electron transport rate (μmol m−2 s−1)

F o :

Dark-adapted minimal fluorescence

Fo′:

Minimal fluorescence after the light period

F m :

Dark-adapted maximal fluorescence

Fm′:

Maximal fluorescence during the saturating pulse

F s :

Steady-state fluorescence in the light

F v :

Dark-adapted variable fluorescence

Fv′:

Variable fluorescence in the light

(Fm′−Fs)/Fv′:

Efficiency of open PSII centers

Fv′/Fm′:

Maximum quantum efficiency of PSII

f :

Fraction of absorbed quanta used by PSII

ΦPSII:

Operating efficiency of whole-chain electron transport through PSII

ΦCO2:

Efficiency of CO2 assimilation

ΦCO2, max:

Maximum quantum yield

g s :

Stomatal conductance to water vapor (mol m−2 s−1)

LED:

Light-emitting diode

l s :

Stomatal limitation to photosynthesis (%)

ME:

Malic enzyme

NPQ:

Non-photochemical quenching

PEPc:

Phosphoenolpyruvate carboxylase

PPDK:

Pyruvate orthophosphate dikinase

PSI:

Photosystem I

PSII:

Photosystem II

Q :

Incident light (photosynthetic photon flux density; μmol m−2 s−1)

Q abs :

Absorbed light (photosynthetic photon flux density; μmol m−2 s−1)

R :

Leaf reflectance

R d :

Dark respiration rate (μmol m−2 s−1)

Rubisco:

Ribulose bisphosphate carboxylase/oxygenase

τ:

Leaf transmittance

θ:

Convexity coefficient of A/Qabs curve

V pr :

CO2-saturated rate of photosynthesis (μmol m−2 s−1)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naidu, S.L., Long, S.P. Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis. Planta 220, 145–155 (2004). https://doi.org/10.1007/s00425-004-1322-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1322-6

Keywords

Navigation