Skip to main content
Log in

The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Previous genetic analysis identified a component, RED1, that is required for normal de-etiolation of Arabidopsis thaliana (L.) Heynh. seedlings in continuous red light (Rc). red1 mutant seedlings exhibit elongated hypocotyls and reduced cotyledon size specifically in Rc and not in continuous far-red light (FRc). Here, we show that red1 is allelic to sur2 and atr4, and is defective in the cytochrome P450 CYP83B1, an enzyme required for normal auxin homeostasis. Two alleles of atr4, like red1, exhibit increased hypocotyl elongation and reduced cotyledon expansion in Rc but not in FRc. We further show that CYP83B1 transcript levels are elevated specifically in Rc-grown seedlings when compared with seedlings grown in darkness or FRc. Hence, the Rc-specific phenotype of the red1 mutant may indicate that Rc-induction of the CYP83B1 transcript is necessary for normal seedling de-etiolation in the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–d
Fig. 2
Fig. 3a,b
Fig. 4a,b
Fig. 5

Similar content being viewed by others

Abbreviations

FR :

Far-red light

FRc :

Continuous FR

IAA :

Indole-3-acetic acid

IAOx :

Indole-3-acetaldoxime

phyA :

Phytochrome A

phyB :

Phytochrome B

R :

Red light

Rc :

Continuous R

References

  • Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    CAS  PubMed  Google Scholar 

  • Barlier I, Kowalczyk M, Marchant A, Ljung K, Bhalerao R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97:14819–14824

    Article  CAS  PubMed  Google Scholar 

  • Behringer FJ, Davies PJ (1992) Indole-3-acetic acid levels after phytochrome-mediated changes in the stem elongation rate of dark- and light-grown Pisum seedlings. Planta 188:85–92

    CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    CAS  PubMed  Google Scholar 

  • Delarue M, Prinsen E, Onckelen HV, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611

    Article  CAS  PubMed  Google Scholar 

  • Fankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Palme K (2002) Polar auxin transport—old questions and new concepts? Plant Mol Biol 49:273–284

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    Article  CAS  PubMed  Google Scholar 

  • Halliday KJ, Fankhauser C (2003) Phytochrome-hormonal signalling networks. New Phytol 157:449–463

    Article  CAS  Google Scholar 

  • Hansen CH, Du L, Naur P, Olsen CE, Axelsen KB, Hick AJ, Pickett JA, Halkier BA (2001) CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem 276:24790–24796

    Article  CAS  PubMed  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    Article  CAS  PubMed  Google Scholar 

  • Hoecker U, Quail PH (2001) The phytochrome A-specific signaling intermediate SPA1 interacts directly with COP1, a constitutive repressor of light signaling in Arabidopsis. J Biol Chem 276:38173–38178

    CAS  PubMed  Google Scholar 

  • Hoecker U, Xu Y, Quail PH (1998) SPA1: a new genetic locus involved in phytochrome A-specific signal transduction. Plant Cell 10:19–33

    CAS  PubMed  Google Scholar 

  • Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462

    CAS  PubMed  Google Scholar 

  • Jones AM, Cochran DS, Lamerson PM, Evans ML, Cohen JD (1991) Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl. Plant Physiol 97:352–358

    CAS  PubMed  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana. Z Pflanzenphysiol 100:147–160

    Google Scholar 

  • Kraepiel Y, Agnes C, Thiery L, Maldiney R, Miginiac E, Delarue M (2001) The growth of tomato (Lycopersicon esculentum Mill.) hypocotyls in the light and in darkness differentially involves auxin. Plant Sci 161:1067–1074

    Article  CAS  PubMed  Google Scholar 

  • Nagy F, Schäfer E (2002) Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants. Annu Rev Plant Biol 53:329–355

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Fankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271

    CAS  PubMed  Google Scholar 

  • Quail PH (2002) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93

    CAS  PubMed  Google Scholar 

  • Romano CP, Robson PR, Smith H, Estelle M, Klee H (1995) Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27:1071–1083

    CAS  PubMed  Google Scholar 

  • Saibo NJ, Vriezen WH, Beemster GT, Van Der Straeten D (2003) Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J 33:989–1000

    CAS  PubMed  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Straeten DV (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 94:2756–2761

    Article  CAS  PubMed  Google Scholar 

  • Smolen G, Bender J (2002) Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160:323–332

    CAS  PubMed  Google Scholar 

  • Swarup R, Parry G, Graham N, Allen T, Bennett M (2002) Auxin cross-talk: integration of signalling pathways to control plant development. Plant Mol Biol 49:411–426

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Tepperman JM, Quail PH (1991) Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis. Plant Cell 3:1275–11288

    CAS  Google Scholar 

  • Wagner D, Hoecker U, Quail PH (1997) RED1 is necessary for phytochrome B-mediated red light-specific signal transduction in Arabidopsis. Plant Cell 9:731–743

    CAS  PubMed  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Sharon Moran for excellent technical assistance. We thank Anastasios Theologis for critical reading of the manuscript. This research was supported by DOE grant DE-FG03-87ER13742 and USDA-ARS CRIS 5335-21000-017-00D. G.T.O. was the recipient of a fellowship from the Consejo Nacional de Ciencia y Tecnológia Fulbright and the University of California-Mexus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Quail.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoecker, U., Toledo-Ortiz, G., Bender, J. et al. The photomorphogenesis-related mutant red1 is defective in CYP83B1, a red light-induced gene encoding a cytochrome P450 required for normal auxin homeostasis. Planta 219, 195–200 (2004). https://doi.org/10.1007/s00425-004-1211-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1211-z

Keywords

Navigation