Skip to main content

Advertisement

Log in

A xylogalacturonan epitope is specifically associated with plant cell detachment

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitope is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified that is specifically associated with a plant cell separation process that results in complete cell detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a–d
Fig. 4a–d
Fig. 5a–c
Fig. 6a–d
Fig. 7
Fig. 8a, b

Similar content being viewed by others

Abbreviations

DAA :

Days after anthesis

2,4-D:

2,4-Dichlorophenoxyacetic acid

ELISA :

Enzyme-linked immunosorbent assay

GalA :

Galacturonic acid

HGA :

Homogalacturonan

HPAEC :

High-performance anion-exchange chromatography

HPSEC :

High-performance size-exclusion chromatography

RG-I :

Rhamnogalacturonan-I

RG-II :

Rhamnogalacturonan-II

XGA :

Xylogalacturonan

References

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    PubMed  Google Scholar 

  • Bazin H (1982) Production of rat monoclonal antibodies with the LOU rat non-secreting IR983F myeloma cell line. Protein Biol Fluids 29:615–618

    Google Scholar 

  • Beldman G, van den Broek LAM, Schols HA, Searle-van Leeuwen MJF, van Laere KMJ, Voragen AGJ (1996) An exogalacturonase from Aspergillus aculeatus able to degrade xylogalacturonan. Biotechnol Lett 18:707–712

    CAS  Google Scholar 

  • Bouveng HO (1965) Polysaccharides in pollen. Acta Chim Scand 19:953–963

    CAS  Google Scholar 

  • Huisman MM, Fransen CT, Kamerling JP, Vliegenthart JF, Schols HA, Voragen AG (2001) The CDTA-soluble pectic substances from soybean meal are composed of rhamnogalacturonan and xylogalacturonan but not homogalacturonan. Biopolymers 58:279–94

    Article  CAS  PubMed  Google Scholar 

  • Iwai H, Ishii T, Satoh S (2001) Absence of arabinan in the side chains of the pectic polysaccharides strongly associated with cell walls of Nicotiana plumbaginifolia non-organogenic callus with loosely attached constituent cells. Planta 213:907–915

    CAS  PubMed  Google Scholar 

  • Iwai H, Masaoka N, Ishii T, Satoh S (2002) A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc Natl Acad Sci USA 99:16319–16324

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MC, Briggs SPH, Knox JP (2003) Intercellular adhesion and cell separation in plants. Plant Cell Environ 26:977–989

    Article  Google Scholar 

  • Jones L, Seymour GB, Knox JP (1997) Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1→4)-β-d-galactan. Plant Physiol 113:1405–1412

    CAS  Google Scholar 

  • Kikuchi A, Edashige Y, Ishii T, Satoh S (1996) A xylogalacturonan whose level is dependent on the size of cell clusters is present in the pectin from cultured carrot cells. Planta 200:369–372

    CAS  Google Scholar 

  • Knox JP (1997) The use of antibodies to study the architecture and developmental regulation of plant cell walls. Int Rev Cytol 171:79–120

    CAS  PubMed  Google Scholar 

  • Le Goff A, Renard CMGC, Bonnin E, Thibault J-F (2001) Extraction, purification and chemical characterisation of xylogalacturonan from pea hulls. Carbohydr Polym 45:325–334

    Article  Google Scholar 

  • Matsuura Y (1984) Chemical structure of pectic polysaccharide of kidney beans. Nippon Nogei Kagaku Kaishi 58:253–259

    CAS  Google Scholar 

  • Matsuura Y, Hatanaka C (1988) Isolation and characterisation of a xylose-rich pectic polysaccharide from Japanese radish. Agric Biol Chem 52:3215–3216

    CAS  Google Scholar 

  • McCartney L, Knox JP (2002) Regulation of pectic polysaccharide domains in relation to cell development and cell properties in the pea testa. J Exp Bot 53:707–713

    Article  CAS  PubMed  Google Scholar 

  • McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1→4)-β-d-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22:105–113

    CAS  PubMed  Google Scholar 

  • Nakamura A, Furuta H, Maeda H, Takao T, Nagamatsu Y (2002) Analysis of the molecular construction of xylogalacturonan isolated from soluble soybean polysaccharides. Biosci Biotechnol Biochem 66:1155–1158

    Article  CAS  PubMed  Google Scholar 

  • Orfila C, Knox JP (2000) Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp. Plant Physiol 122:775–781

    CAS  PubMed  Google Scholar 

  • Orfila C, Seymour GB, Willats WGT, Huxham IM, Jarvis MC, Dover CJ, Thompson AJ, Knox JP (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1→5)-α-l-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol 126:210–221

    CAS  PubMed  Google Scholar 

  • Redgwell RJ, Hansen CE (2000) Isolation and characterisation of cell wall polysaccharides from cocoa (Theobroma cacao L.) beans. Planta 210:823–830

    Article  CAS  PubMed  Google Scholar 

  • Renard CMGC, Weightman RM, Thibault JF (1997) The xylose-rich pectins from pea hulls. Int J Biol Macromol 21:155–162

    Article  CAS  PubMed  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    CAS  PubMed  Google Scholar 

  • Roberts JA, Elliot KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence and other cell separation processes. Annu Rev Plant Biol 53:131–58

    Google Scholar 

  • Ros JM, Schols HA, Voragen AGJ (1998) Lemon albedo cell walls contain distinct populations of pectic hairy regions. Carbohydr Polym 37:159–166

    Article  CAS  Google Scholar 

  • Schols HA, Bakx EJ, Schipper D, Voragen AGJ (1995) A xylogalacturonan subunit present in the modified hairy regions of apple pectin. Carbohydr Res 279:265–279

    Article  CAS  Google Scholar 

  • Thompson HJM, Knox JP (1998) Stage-specific responses of embryogenic carrot cell suspension cultures to arabinogalactan protein-binding β-glucosyl Yariv reagent. Planta 205:32–38

    Article  CAS  Google Scholar 

  • van der Vlugt-Bergmans CJB, Meeuwsen PJA, Voragen AGJ, van Ooyen AJJ (2000) Endo-xylogalacturonan hydrolase, a novel pectinolytic enzyme. Appl Environ Microbiol 66:36–41

    PubMed  Google Scholar 

  • Wen F, Zhu Y, Hawes MC (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129–1140

    Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydr Res 308:149–152

    CAS  PubMed  Google Scholar 

  • Willats WGT, Steele-King CG, Marcus SE, Knox JP (1999) Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J 20:610–628

    Article  Google Scholar 

  • Willats WGT, McCartney L, Knox JP (2001a) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213:37–44

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, McCartney L, Mackie W, Knox JP (2001b) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Orfila C, Limberg G, Buchholt HC, van Alebeek G-JWM, Voragen AGJ, Marcus SE, Christensen TMIE, Mikkelsen JD, Murray BS, Knox JP (2001c) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls: implications for pectin methyl esterase action, matrix properties and cell adhesion. J Biol Chem 276:19404–19413

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Mort AJ (1996) Partial characterization of xylogalacturonans from cell walls of ripe watermelon fruit: inhibition of endopolygalacturonase activity by xylosylation. In: Visser J, Voragen AGJ (eds) Pectins and pectinases. Elsevier, Amsterdam, pp 79–88

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Knox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willats, W.G.T., McCartney, L., Steele-King, C.G. et al. A xylogalacturonan epitope is specifically associated with plant cell detachment. Planta 218, 673–681 (2004). https://doi.org/10.1007/s00425-003-1147-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1147-8

Keywords