Skip to main content
Log in

A single recessive mutation in the proteolytic machinery of Arabidopsis chloroplasts impairs photoprotection and photosynthesis upon cold stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Intracellular proteases, together with molecular chaperones, are components of the cellular protein quality control system. Although the identity of chloroplast proteases has been revealed in recent years, little is known about their regulation. As a first step towards identifying unknown functional or regulatory components of the chloroplast proteolytic machinery, a genetic screen was devised with the aim of generating Arabidopsis thaliana (L.) Heynh. mutants impaired in chloroplast protein degradation. A streptomycin-resistance gene was fused to a cDNA construct that encodes an unstable mutant of the OE33 protein. This chimeric gene was used for transforming Arabidopsis plants. Analysis of transgenic plants revealed a correlation between streptomycin resistance and accumulation of the recombinant fusion protein. Seeds from transgenic plants that were sensitive to streptomycin were chemically mutagenized and screened for resistance to streptomycin. Such resistance could be due to stabilization of the protein caused by a mutation in the chloroplast proteolytic machinery. Genetic analysis of one of the mutants showed the mutation to be recessive, in a single nuclear gene. Further characterization of the mutant revealed that it was not a result of increased transcription of the transgene. Moreover, chloroplast lysates from the mutant plant showed decreased ATP-dependent degradation of a chloroplast protein substrate, consistent with the conclusion that the mutation impaired the proteolytic machinery. Physiological analysis revealed that upon cold stress, photoprotection and photosynthesis in the mutant was inhibited, suggesting that the chloroplast proteolytic machinery is involved in repairing damage incurred to the photosynthetic machinery upon exposure to cold temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–d
Fig. 3a–d
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–c

Similar content being viewed by others

Abbreviations

NPQ:

non-photochemical quenching

OE33:

the 33-kDa subunit of the oxygen-evolving complex

RISP:

Rieske Fe–S protein

TR :

antibiotic-resistant transgenic plants

TS :

antibiotic-sensitive transgenic plants

References

  • Adam Z (1996) Protein stability and degradation in chloroplasts. Plant Mol Biol 32:773–783

    CAS  PubMed  Google Scholar 

  • Adam Z (2000) Chloroplast proteases: possible regulators of gene expression? Biochimie 82:647–654

    CAS  PubMed  Google Scholar 

  • Adam Z (2001) Chloroplast proteases and their role in photosynthesis regulation. In: Aro E-M, Andersson B (eds) Regulation of photosynthesis. Kluwer, Dordrecht, pp 265–276

  • Adam Z, Clarke AK (2002) Cutting edge of chloroplast proteolysis. Trends Plant Sci 7:451–456

    Article  CAS  PubMed  Google Scholar 

  • Adam Z, Halperin T, Itzhaki H, Lindahl M, Ostersetzer O (1998). The proteolytic machinery of chloroplasts: homologues of bacterial proteases. In: Garab G (ed) Photosynthesis: mechanisms and effects, vol 3. Kluwer, Dordrecht, pp 1871–1876

  • Adam Z, Adamska I, Nakabayashi K, Ostersetzer O, Haussuhl K, Manuell A, Vallon O, Rodermel SR, Shinozaki K, Clarke AK (2001) Chloroplast and mitochondrial proteases in Arabidopsis. A proposed nomenclature. Plant Physiol 125:1912–1918

    CAS  PubMed  Google Scholar 

  • Andersson B, Aro E-M (1997) Proteolytic activities and proteases of plant chloroplasts. Physiol Plant 100:780–793

    Article  CAS  Google Scholar 

  • Bachmair A, Becker F, Schell J (1993) Use of a reporter transgene to generate Arabidopsis mutants in ubiquitin-dependent protein degradation. Proc Natl Acad Sci USA 90:418–421

    CAS  PubMed  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C R Acad Sci Paris Life Sci 316:1194–1199

    CAS  Google Scholar 

  • Becker D (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18:203

    CAS  PubMed  Google Scholar 

  • Casari G, De Fusco M, Ciarmatori S, Zeviani M, Mora M, Fernandez P, De Michele G, Filla A, Cocozza S, Marconi R, Durr A, Fontaine B, Ballabio A (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983

    CAS  PubMed  Google Scholar 

  • Chassin Y, Kapri-Pardes E, Sinvany G, Arad T, Adam Z (2002) Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis thaliana. Plant Physiol 130:857–864

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Choi Y, Voytas DF, Rodermel S (2000) Mutations in the Arabidopsis VAR2 locus cause leaf variegation due to the loss of a chloroplast FtsH protease. Plant J 22:303–313

    PubMed  Google Scholar 

  • Clarke AK (1999) ATP-dependent Clp proteases in photosynthetic organisms—a cut above the rest! Ann Bot 83:593–599

    Google Scholar 

  • Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30:465–506

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S, Wickner S, Maurizi MR (1997) Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823

    CAS  PubMed  Google Scholar 

  • Halperin T, Adam Z (1996) Degradation of mistargeted OEE33 in the chloroplast stroma. Plant Mol Biol 30:925–933

    CAS  PubMed  Google Scholar 

  • Halperin T, Ostersetzer O, Adam Z (2001) ATP-dependent association between subunits of Clp protease in pea chloroplasts. Planta 213:614–619

    CAS  PubMed  Google Scholar 

  • Haussuhl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20:713–722

    PubMed  Google Scholar 

  • Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    CAS  PubMed  Google Scholar 

  • Itzhaki H, Naveh L, Lindahl M, Cook M, Adam Z (1998) Identification and characterization of DegP, a serine protease associated with the luminal side of the thylakoid membrane. J Biol Chem 273:7094–7098

    CAS  PubMed  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci USA 86:8467–8471

    CAS  PubMed  Google Scholar 

  • Krause G (1994) Photoinhibition induced by low temperatures. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis from molecular mechanisms to the field. Bios Scientific, Oxford, pp 331–348

  • Krysan PJ, Young JC, Tax F, Sussman MR (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc Natl Acad Sci USA 93:8145–50

    CAS  Google Scholar 

  • Langer T (2000) AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci 25:247–251

    CAS  PubMed  Google Scholar 

  • Langer T, Neupert W (1996) Regulated protein degradation in mitochondria. Experientia 52:1069–1076

    CAS  PubMed  Google Scholar 

  • Lindahl M, Tabak S, Cseke L, Pichersky E, Andersson B, Adam Z (1996) Identification, characterization, and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants. J Biol Chem 271:29329–29334

    CAS  PubMed  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431

    CAS  PubMed  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    CAS  Google Scholar 

  • Majeran W, Wollman F-A, Vallon O (2000) Evidence for a role of ClpP in the degradation of the chloroplast cytochrome b6f complex. Plant Cell 12:137–149

    CAS  PubMed  Google Scholar 

  • Melis A (1999) Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage? Trends Plant Sci 4:130–135

    PubMed  Google Scholar 

  • Ostersetzer O, Adam Z (1997) Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease. Plant Cell 9:957–965

    CAS  PubMed  Google Scholar 

  • Peltier J-B, Ytterberg J, Liberles DA, Roepstorff P, van Wijk KJ (2001) Identification of a 350 kDa ClpP protease complex with 10 different Clp isoforms in chloroplasts of Arabidopsis thaliana. J Biol Chem 276:16318–16327

    CAS  PubMed  Google Scholar 

  • Potuschak T, Stary S, Schlogelhofer P, Becker F, Nejinskaia V, Bachmair A (1998) PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc Natl Acad Sci USA 95:7904–7908

    CAS  PubMed  Google Scholar 

  • Prasil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanism of photoinhibition and recovery processes. In: Barber J (ed) Topics in photosynthesis. Elsevier, Amsterdam, pp 295–348

  • Shanklin J, Dewitt ND, Flanagan JM (1995) The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpA: an archetypal two-component ATP-dependent protease. Plant Cell 7:1713–1722

    CAS  PubMed  Google Scholar 

  • Sokolenko A, Pojidaeva E, Zinchenko V, Panichkin V, Glaser VM, Herrmann RG, Shestakov SV (2002) The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts. Curr Genet 41:291–310

    Article  CAS  PubMed  Google Scholar 

  • Sonoike K (1996a) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–247

    CAS  Google Scholar 

  • Sonoike K (1996b) Degradation of PsaB gene product, the reaction center subunit of photosystem I, is caused during photoinhibition of photosystem I: possible involvement of active oxygen species. Plant Sci 115:157–164

    CAS  Google Scholar 

  • Tait RC, Rempel H, Rodriguez RL, Kadu CI (1985) The aminoglycoside resistance operon of the plasmid pSa: nucleotide sequence of the streptomycin-spectinomycin resistance gene. Gene 36:97–104

    Article  CAS  PubMed  Google Scholar 

  • Takechi K, Sodmergen, Murata M, Motoyoshi F, Sakamoto W (2000) The YELLOW VARIEGATED (VAR2) locus encodes a homologue of FtsH, an ATP-dependent protease in Arabidopsis. Plant Cell Physiol 41:1334–1346

    CAS  PubMed  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativa L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306

    CAS  Google Scholar 

  • Tjus SE, Moller BL, Scheller HV (1999) Photoinhibition of photosystem I damages both reaction center proteins PSI-A and PSI-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60:75–86

    CAS  Google Scholar 

  • Topfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucleic Acids Res 15:5890.

    PubMed  Google Scholar 

  • Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286:1888–1893

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Klaudia Brix for skillful help with confocal microscopy, Dr. Victor Raskin for excellent help and advice on chlorophyll fluorescence measurements, and Dr. Nir Ohad and Profs. Avi Levy and Itzhak Ohad for insightful discussions. This work was supported by grants from The Austrian Friends of The Hebrew University (to A.B. and Z.A.), the Israel Ministry of Science (to Z.A.), and the US–Israel Binational Agricultural Research and Development Fund—BARD (to Z.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggie Levy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, M., Bachmair, A. & Adam, Z. A single recessive mutation in the proteolytic machinery of Arabidopsis chloroplasts impairs photoprotection and photosynthesis upon cold stress. Planta 218, 396–405 (2004). https://doi.org/10.1007/s00425-003-1120-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1120-6

Keywords

Navigation