Skip to main content

Advertisement

Log in

Different time courses of GTP[γ-S]-induced exocytosis and current oscillations in isolated mouse pancreatic acinar cells

  • Original Article
  • Molecular and Cellular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Exocytosis in isolated mouse pancreatic acinar cells was investigated using the dual-frequency method for measuring membrane capacitance and ionic conductances. Under control conditions, single exo-and endocytotic events could be resolved. The total cell capacitance slightly decreased to 98.7 ± 0.9% of the initial cell capacitance within 10 min after establishing the whole-cell configuration. When guanosine 5′-O-(3-thiophosphate) (GTP[γ-S] was added to the patch pipette, stepwise elevations in membrane capacitance occurred and the cell capacitance increased to 106.7 ±1.6% within 10 min. Exocytosis was also stimulated by GTP[γ-S] when a Ca2+-free pipette solution supplemented with 1 to 10 mM ethylenebis(oxonitrilo) tetraacetate (EGTA) was used. Measurement of the DC current component in parallel with AC current analysis was used to isolate components of the Ca2+-dependent Cl and monovalent cation conductances from the whole-cell conductance. These experiments demonstrate that in GTP[γ-S]-stimulated pancreatic acinar cells: (1) activation of Cl currents precedes that of cation currents, and (2) fusion of the zymogen granule membrane with the plasma membrane does not lead to incorporation of active Cl or nonselective cation channels (≥ 10 pS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almers W (1978) Gating currents and charge movements in excitable membranes. Rev Physiol Biochem Pharmacol 82:97–190

    Google Scholar 

  2. Becq F, Hollande E, Gola M (1993) Phosphorylation-regulated low-conductance Cl channels in a human pancreatic duct cell line. Pflügers Arch 425:1–8

    Article  PubMed  CAS  Google Scholar 

  3. DeLisle RC, Hopfer U (1986) Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am J Physiol 250:G489-G496

    CAS  Google Scholar 

  4. DeLisle RC, Howell GW (1995) Evidence of heterotrimeric G-protein involvement in regulated exocytosis from permeabilized pancreatic acini. Pancreas 10:374–381

    Article  CAS  Google Scholar 

  5. Ermak TH, Rothman SS (1981) Zymogen granules of pancreas decrease in size in response to feeding. Cell Tissue Res 214:51–66

    Article  PubMed  CAS  Google Scholar 

  6. Fuller CM, Eckhardt L, Schulz I (1989) Ionic and osmotic dependence of secretion from permeabilised acini of the rat pancreas. Pflügers Arch 413:385–394

    Article  PubMed  CAS  Google Scholar 

  7. Geuze JJ, Kramer MF (1974) Function of coated membranes and multivesicular bodies during membrane regulation in stimulated exocrine pancreas cells. Cell Tissue Res 156:1–20

    Article  PubMed  CAS  Google Scholar 

  8. Gögelein H (1988) Chloride channels in epithelia. Biochim Biophys Acta 947:521–547

    PubMed  Google Scholar 

  9. Gray MA, Pollard CE, Harris A, Coleman L, Greenwell JR, Argent BE (1990). Anion selectivity and block of the small-conductance chloride channel on pancreatic duct cells. Am J Physiol 259:C752-C761

    PubMed  CAS  Google Scholar 

  10. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  PubMed  CAS  Google Scholar 

  11. Hansen SH, Sandvig K, van Deurs B (1991) The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations. J Cell Biol 113:731–741

    Article  PubMed  CAS  Google Scholar 

  12. Helms JB (1995) Role of heterotrimeric GTP binding proteins in vesicular protein transport: indications for both classical and alternative G protein cycles. FEBS Lett 369:84–88

    Article  PubMed  CAS  Google Scholar 

  13. Iwatsuki N, Petersen OH (1981) Dissociation between stimulant-evoked acinar membrane resistance change and amylase secretion in the mouse parotid gland. J Physiol (Lond) 314:79–84

    CAS  Google Scholar 

  14. Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348:735–738

    Article  PubMed  CAS  Google Scholar 

  15. Kasai H, Li XY, Miyashita Y (1993) Subcellular distribution of Ca2+ release channels underlying Ca2+ waves and oscillations in exocrine pancreas. Cell 74:669–677

    Article  PubMed  CAS  Google Scholar 

  16. Kitagawa M, Williams JA, DeLisle RC (1990) Amylase release from streptolysin O-permeabilized pancreatic acini. Am J Physiol 259:G157-G164

    PubMed  CAS  Google Scholar 

  17. Leyte A, Barr FA, Kehlenbach RH, Huttner WB (1992) Multiple trimeric G-proteins on the trans-Golgi network exert stimulatory and inhibitory effects on secretory vesicle formation. EMBO J 11:4795–4804

    PubMed  CAS  Google Scholar 

  18. Maruyama Y (1986) Ca2+-induced excess capacitance fluctuation studied by phase-sensitive detection method in exocrine pancreatic acinar cells. Pflügers Arch 407:561–563

    Article  PubMed  CAS  Google Scholar 

  19. Maruyama Y, Petersen OH (1994) Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell Calcium 16:419–430

    Article  PubMed  CAS  Google Scholar 

  20. Maruyama Y, Inooka G, Li YX, Miyashita Y, Kasai H (1993) Agonist-induced localized Ca2+ spikes directly triggering exocytotic secretion in exocrine pancreas. EMBO J 12:3017–3022

    PubMed  CAS  Google Scholar 

  21. Nadin CY, Rogers J, Tomlinson S, Edwardson JM (1989) A specific interaction in vitro between pancreatic zymogen granules and plasma membranes: stimulation by G-protein activators but not by Ca2+. J Cell Biol 109:2801–2808

    Article  PubMed  CAS  Google Scholar 

  22. O’Doherty J, Stark RJ (1983) A transcellular route for Na-coupled Cl transport in secreting pancreatic acinar cells. Am J Physiol 245:G499-G503

    PubMed  Google Scholar 

  23. Osipchuk YV, Wakui M, Yule DI, Gallacher DV, Petersen OH (1990) Cytoplasmic Ca2+ oscillations evoked by receptor stimulation, G-protein activation, internal application of inositol trisphosphate or Ca2+: simultaneous microfluorimetry and Ca2+ dependent Cl current recording in single pancreatic acinar cells. EMBO J 9:697–704

    PubMed  CAS  Google Scholar 

  24. Penner R (1988) Multiple signaling pathways control stimulus-secretion coupling in rat peritoneal mast cells. Proc Natl Acad Sci USA 85:9856–9860

    Article  PubMed  CAS  Google Scholar 

  25. Petersen OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol (Lond) 448:1–51

    CAS  Google Scholar 

  26. Püper A, Plusczyk T, Eckhardt L, Schulz I (1991) Effects of cholecystokinin, cholecystokinin JMV-180 and GTP analogs on enzyme secretion from permeabilized acini and chloride conductance in isolated zymogen granules of the rat pancreas. Eur J Biochem 197:391–398

    Article  Google Scholar 

  27. Pfeiffer F, Schmid A, Schulz I (1995) Capacitative Ca2+ influx and a Ca2+-dependent nonselective cation pathway are dis-criminated by genistein in mouse pancreatic acinar cells. Pflügers Arch 430:916–922

    Article  PubMed  CAS  Google Scholar 

  28. Rohlicek V, Schmid A (1994) Dual-frequency method for synchronous measurement of cell capacitance, membrane conductance and access resistance on single cells. Pflügers Arch 428:30–38

    Article  PubMed  CAS  Google Scholar 

  29. Schmid A, Schulz I (1995) Characterization of single potassium channels in mouse pancreatic acinar cells. J Physiol (Lond) 484:661–676

    CAS  Google Scholar 

  30. Schnefel S, Zimmermann P, Pröfrock A, Jahn R, Aktories K, Zeuzem S, Haase W, Schulz I (1992) High-and small-molecular-weight GTP-binding proteins in zymogen granule membranes of rat pancreatic acinar cells. Cell Physiol Biochem 2:77–89

    Article  CAS  Google Scholar 

  31. Schulz I, Stolze HH (1980) The exocrine pancreas: the role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Annu Rev Physiol 42:127–156

    Article  PubMed  CAS  Google Scholar 

  32. Singh M (1980) Amylase release from dissociated mouse pancreatic acinar cells stimulated by glucagon: effect of membrane stabilizers. J Physiol (Lond) 309:81–91

    CAS  Google Scholar 

  33. Thévenod F, Chathadi KV, Jiang B, Hopfer U (1992) ATP-sensitive K+ conductance in pancreatic zymogen granules: block by glyburide and activation by diazoxide. J Membr Biol 129:253–266

    PubMed  Google Scholar 

  34. Thévenod F, Anderie I, Schulz I (1994) Monoclonal antibodies against MDR1 P-glycoprotein inhibit chloride conductance and label a 65-kDa protein in pancreatic zymogen granule membranes. J Biol Chem 269:24410–24417

    PubMed  Google Scholar 

  35. Thorn P, Petersen OH (1994) A voltage-sensitive transient potassium current in mouse pancreatic acinar cells. Pflügers Arch 428:288–295

    Article  PubMed  CAS  Google Scholar 

  36. Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH (1993) Local and global cytosolic Ca2+ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. Cell 74:661–668

    Article  PubMed  CAS  Google Scholar 

  37. Zhao H, Muallem S (1995) Agonist-specific regulation of [Na+]i in pancreatic acinar cells. J Gen Physiol 106:1243–1263

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, A., Schulz, I. Different time courses of GTP[γ-S]-induced exocytosis and current oscillations in isolated mouse pancreatic acinar cells. Pflügers Arch. 432, 876–884 (1996). https://doi.org/10.1007/s004240050211

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004240050211

Key words

Navigation