Skip to main content

Advertisement

Log in

Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The integrity of tight junctions, which regulate paracellular permeability, is challenged by many bacterial pathogens. This is caused by inflammatory responses triggered by pathogens and direct interaction of bacteria or their toxins with host epithelial cells. In some cases, tight junction proteins represent receptors for cell surface proteins or toxins of the pathogen, such as Clostridium perfringens enterotoxin (CPE). CPE causes diarrhea and cramps—the symptoms of a common foodborne illness, caused by C. perfringens type A. It uses a subgroup of the claudin family of tight junction proteins as receptors and forms pores in the membrane of intestinal epithelial cells. Ca2+ influx through these pores finally triggers cell damage. In this review, we summarize tight junction targeting and alteration by a multitude of different microorganisms such as C. perfringens, Escherichia coli, Helicobacter pylori, Salmonella typhimurium, Shigella flexneri, Vibrio cholerae, Yersinia enterocolitica, protozoan parasites, and their proteins. A focus is drawn towards CPE, the interaction with its receptors, cellular, and pathophysiological consequences for the intestinal epithelium. In addition, we portend to the use of CPE-based claudin modulators for drug delivery as well as diagnosis and therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:1430–1434. doi:10.1126/science.1081919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Autheman D, Wyder M, Popoff M, D’Herde K, Christen S, Posthaus H (2013) Clostridium perfringens beta-toxin induces necrostatin-inhibitable, calpain-dependent necrosis in primary porcine endothelial cells. PLoS One 8:e64644. doi:10.1371/journal.pone.0064644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Awad MM, Bryant AE, Stevens DL, Rood JI (1995) Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol Microbiol 15:191–202. doi:10.1111/j.1365-2958.1995.tb02234.x

    Article  CAS  PubMed  Google Scholar 

  4. Backert S, Clyne M, Tegtmeyer N (2011) Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun Signal 9:28. doi:10.1186/1478-811X-9-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ben-David U, Nudel N, Benvenisty N (2013) Immunologic and chemical targeting of the tight-junction protein claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun 4:1992. doi:10.1038/ncomms2992

    Article  PubMed  CAS  Google Scholar 

  6. Bertelsen LS, Paesold G, Marcus SL, Finlay BB, Eckmann L, Barrett KE (2004) Modulation of chloride secretory responses and barrier function of intestinal epithelial cells by the Salmonella effector protein SigD. Am J Physiol Cell Physiol 287:C939–C948. doi:10.1152/ajpcell.00413.2003

    Article  CAS  PubMed  Google Scholar 

  7. Bos J, Smithee L, McClane B, Distefano RF, Uzal F, Songer JG, Mallonee S, Crutcher JM (2005) Fatal necrotizing colitis following a foodborne outbreak of enterotoxigenic Clostridium perfringens type A infection. Clin Infect Dis 40:E78–E83. doi:10.1086/429829

    Article  PubMed  Google Scholar 

  8. Boyle EC, Brown NF, Finlay BB (2006) Salmonella enterica serovar typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol 8:1946–1957. doi:10.1111/j.1462-5822.2006.00762.x

    Article  CAS  PubMed  Google Scholar 

  9. Briggs DC, Naylor CE, Smedley JG III, Lukoyanova N, Robertson S, Moss DS, McClane BA, Basak AK (2011) Structure of the food-poisoning Clostridium perfringens enterotoxin reveals similarity to the aerolysin-like pore-forming toxins. J Mol Biol 413(1):138–149. doi:10.1016/j.jmb.2011.07.066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bücker R, Krug SM, Rosenthal R, Günzel D, Fromm A, Zeitz M, Chakraborty T, Fromm M, Epple HJ, Schulzke JD (2011) Aerolysin from Aeromonas hydrophila perturbs tight junction integrity and cell lesion repair in intestinal epithelial HT-29/B6 cells. J Infect Dis 204:1283–1292. doi:10.1093/infdis/jir504

    Article  PubMed  CAS  Google Scholar 

  11. Bücker R, Schulz E, Günzel D, Bojarski C, Lee IF, John LJ, Wiegand S, Janssen T, Wieler LH, Dobrindt U, Beutin L, Ewers C, Fromm M, Siegmund B, Troeger H, Schulzke JD (2014) Alpha-haemolysin of Escherichia coli in IBD: a potentiator of inflammatory activity in the colon. Gut 63:1893–1901. doi:10.1136/gutjnl-2013-306099

    Article  PubMed  CAS  Google Scholar 

  12. Caserta JA, Robertson SL, Saputo J, Shrestha A, McClane BA, Uzal FA (2011) Development and application of a mouse intestinal loop model to study the in vivo action of Clostridium perfringens enterotoxin. Infect Immun 79:3020–3027. doi:10.1128/IAI.01342-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakrabarti G, McClane BA (2005) The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 7:129–146. doi:10.1111/j.1462-5822.2004.00442.x

    Article  CAS  PubMed  Google Scholar 

  14. Chakrabarti G, Zhou X, McClane BA (2003) Death pathways activated in CaCo-2 cells by Clostridium perfringens enterotoxin. Infect Immun 71:4260–4270. doi:10.1128/IAI.71.8.4260-4270.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen J, Ma M, Uzal FA, McClane BA (2014) Host cell-induced signaling causes Clostridium perfringens to upregulate production of toxins important for intestinal infections. Gut Microbes 5:96–107. doi:10.4161/gmic.26419

    Article  PubMed  Google Scholar 

  16. Chen J, Theoret JR, Shrestha A, Smedley JG 3rd, McClane BA (2012) Cysteine-scanning mutagenesis supports the importance of Clostridium perfringens enterotoxin amino acids 80 to 106 for membrane insertion and pore formation. Infect Immun 80:4078–4088. doi:10.1128/IAI.00069-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cocco E, Casagrande F, Bellone S, Richter CE, Bellone M, Todeschini P, Holmberg JC, Fu HH, Montagna MK, Mor G, Schwartz PE, Arin-Silasi D, Azoudi M, Rutherford TJ, Abu-Khalaf M, Pecorelli S, Santin AD (2010) Clostridium perfringens enterotoxin carboxy-terminal fragment is a novel tumor-homing peptide for human ovarian cancer. BMC Cancer 10:349. doi:10.1186/1471-2407-10-349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dean P, Kenny B (2004) Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 54:665–675. doi:10.1111/j.1365-2958.2004.04308.x

    Article  CAS  PubMed  Google Scholar 

  19. Di Pierro M, Lu R, Uzzau S, Wang W, Margaretten K, Pazzani C, Maimone F, Fasano A (2001) Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem 276:19160–19165. doi:10.1074/jbc.M009674200

    Article  CAS  PubMed  Google Scholar 

  20. Dorca-Arevalo J, Pauillac S, Diaz-Hidalgo L, Martin-Satue M, Popoff MR, Blasi J (2014) Correlation between in vitro cytotoxicity and in vivo lethal activity in mice of epsilon toxin mutants from Clostridium perfringens. PLoS One 9:e102417. doi:10.1371/journal.pone.0102417

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ebihara C, Kondoh M, Harada M, Fujii M, Mizuguchi H, Tsunoda S, Horiguchi Y, Yagi K, Watanabe Y (2007) Role of Tyr306 in the C-terminal fragment of Clostridium perfringens enterotoxin for modulation of tight junction. Biochem Pharmacol 73:824–830. doi:10.1016/j.bcp.2006.11.013

    Article  CAS  PubMed  Google Scholar 

  22. Fasano A, Uzzau S, Fiore C, Margaretten K (1997) The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112:839–846. doi:10.1053/gast.1997.v112.pm9041245

    Article  CAS  PubMed  Google Scholar 

  23. Fernandez-Miyakawa ME, Pistone Creydt V, Uzal FA, McClane BA, Ibarra C (2005) Clostridium perfringens enterotoxin damages the human intestine in vitro. Infect Immun 73:8407–8410. doi:10.1128/IAI.73.12.8407-8410.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fisher DJ, Fernandez-Miyakawa ME, Sayeed S, Poon R, Adams V, Rood JI, Uzal FA, McClane BA (2006) Dissecting the contributions of Clostridium perfringens type C toxins to lethality in the mouse intravenous injection model. Infect Immun 74:5200–5210. doi:10.1128/IAI.00534-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S (2000) Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476:258–261. doi:10.1016/S0014-5793(00)01744-0

    Article  CAS  PubMed  Google Scholar 

  26. Fukumatsu M, Ogawa M, Arakawa S, Suzuki M, Nakayama K, Shimizu S, Kim M, Mimuro H, Sasakawa C (2012) Shigella targets epithelial tricellular junctions and uses a noncanonical clathrin-dependent endocytic pathway to spread between cells. Cell Host Microbe 11:325–336. doi:10.1016/j.chom.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  27. Garcia JP, Li J, Shrestha A, Freedman JC, Beingesser J, McClane BA, Uzal FA (2014) Clostridium perfringens type A enterotoxin damages the rabbit colon. Infect Immun 82:2211–2218. doi:10.1128/IAI.01659-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Gerlach RG, Hensel M (2007) Protein secretion systems and adhesins: the molecular armory of gram-negative pathogens. Int J Med Microbiol 297:401–415. doi:10.1016/j.ijmm.2007.03.017

    Article  CAS  PubMed  Google Scholar 

  29. Goldstein J, Morris WE, Loidl CF, Tironi-Farinati C, McClane BA, Uzal FA, Fernandez-Miyakawa ME (2009) Clostridium perfringens epsilon toxin increases the small intestinal permeability in mice and rats. PLoS One 4:e7065. doi:10.1371/journal.pone.0007065

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Gui L, Subramony C, Fratkin J, Hughson MD (2002) Fatal enteritis necroticans (pigbel) in a diabetic adult. Mod Pathol 15:66–70. doi:10.1038/modpathol.3880491

    Article  PubMed  Google Scholar 

  31. Guttman JA, Samji FN, Li Y, Vogl AW, Finlay BB (2006) Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect Immun 74:6075–6084. doi:10.1128/IAI.00721-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hanajima-Ozawa M, Matsuzawa T, Fukui A, Kamitani S, Ohnishi H, Abe A, Horiguchi Y, Miyake M (2007) Enteropathogenic Escherichia coli, Shigella flexneri, and Listeria monocytogenes recruit a junctional protein, zonula occludens-1, to actin tails and pedestals. Infect Immun 75:565–573. doi:10.1128/IAI.01479-06

    Article  CAS  PubMed  Google Scholar 

  33. Hanna PC, Mietzner TA, Schoolnik GK, McClane BA (1991) Localization of the receptor-binding region of Clostridium perfringens enterotoxin utilizing cloned toxin fragments and synthetic peptides. The 30 C-terminal amino acids define a functional binding region. J Biol Chem 266:11037–11043

    CAS  PubMed  Google Scholar 

  34. Harada M, Kondoh M, Ebihara C, Takahashi A, Komiya E, Fujii M, Mizuguchi H, Tsunoda S, Horiguchi Y, Yagi K, Watanabe Y (2007) Role of tyrosine residues in modulation of claudin-4 by the C-terminal fragment of Clostridium perfringens enterotoxin. Biochem Pharmacol 73:206–214. doi:10.1016/j.bcp.2006.10.002

    Article  CAS  PubMed  Google Scholar 

  35. Hardy SP, Denmead M, Parekh N, Granum PE (1999) Cationic currents induced by Clostridium perfringens type A enterotoxin in human intestinal CaCo-2 cells. J Med Microbiol 48:235–243. doi:10.1099/00222615-48-3-235

    Article  CAS  PubMed  Google Scholar 

  36. Hatheway CL (1990) Toxigenic clostridia. Clin Microbiol Rev 3:66–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P (2015) Interaction of the Clostridium difficile binary toxin CDT and its host cell receptor, lipolysis-stimulated lipoprotein receptor (LSR). J Biol Chem 290:14031–14044. doi:10.1074/jbc.M115.650523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hering NA, Fromm A, Kikhney J, Lee IF, Moter A, Schulzke JD, Bücker R (2016) Yersinia enterocolitica affects intestinal barrier function in the colon. J Infect Dis 213:1157–1162. doi:10.1093/infdis/jiv571

    Article  PubMed  Google Scholar 

  39. Hering NA, Richter JF, Krug SM, Günzel D, Fromm A, Bohn E, Rosenthal R, Bücker R, Fromm M, Troeger H, Schulzke JD (2011) Yersinia enterocolitica induces epithelial barrier dysfunction through regional tight junction changes in colonic HT-29/B6 cell monolayers. Lab Investig 91:310–324. doi:10.1038/labinvest.2010.180

    Article  CAS  PubMed  Google Scholar 

  40. Hodges K, Gill R (2010) Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes 1:4–21. doi:10.4161/gmic.1.1.11036

    Article  PubMed  PubMed Central  Google Scholar 

  41. Horiguchi Y, Uemura T, Kozaki S, Sakaguchi G (1986) Effects of Ca2+ and other cations on the action of Clostridium perfringens enterotoxin. Biochim Biophys Acta 889:65–71. doi:10.1016/0167-4889(86)90009-1

    Article  CAS  PubMed  Google Scholar 

  42. Iacovache I, De Carlo S, Cirauqui N, Dal Peraro M, van der Goot FG, Zuber B (2016) Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat Commun 7:12062. doi:10.1038/ncomms12062

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945. doi:10.1083/jcb.200510043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. John LJ, Fromm M, Schulzke JD (2011) Epithelial barriers in intestinal inflammation. Antioxid Redox Signal 15:1255–1270. doi:10.1089/ars.2011.3892

    Article  CAS  PubMed  Google Scholar 

  45. Katahira J, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Molecular cloning and functional characterization of the receptor for Clostridium perfringens enterotoxin. J Cell Biol 136:1239–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 272:26652–26658. doi:10.1074/jbc.272.42.26652

    Article  CAS  PubMed  Google Scholar 

  47. Keyburn AL, Boyce JD, Vaz P, Bannam TL, Ford ME, Parker D, Di Rubbo A, Rood JI, Moore RJ (2008) NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog 4:e26. doi:10.1371/journal.ppat.0040026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kimura J, Abe H, Kamitani S, Toshima H, Fukui A, Miyake M, Kamata Y, Sugita-Konishi Y, Yamamoto S, Horiguchi Y (2010) Clostridium perfringens enterotoxin interacts with claudins via electrostatic attraction. J BiolChem 285:401–408. doi:10.1074/jbc.M109.051417

    CAS  Google Scholar 

  49. Kitadokoro K, Nishimura K, Kamitani S, Fukui-Miyazaki A, Toshima H, Abe H, Kamata Y, Sugita-Konishi Y, Yamamoto S, Karatani H, Horiguchi Y (2011) Crystal structure of Clostridium perfringens enterotoxin displays features of beta-pore-forming toxins. J Biol Chem 286:19549–19555. doi:10.1074/jbc.M111.228478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kobelt D, Aumann J, Schmidt M, Wittig B, Fichtner I, Behrens D, Lemm M, Freundt G, Schlag PM, Walther W (2014) Preclinical study on combined chemo- and nonviral gene therapy for sensitization of melanoma using a human TNF-alpha expressing MIDGE DNA vector. Mol Oncol 8:609–619. doi:10.1016/j.molonc.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  51. Kohler H, Sakaguchi T, Hurley BP, Kase BA, Reinecker HC, McCormick BA (2007) Salmonella enterica serovar typhimurium regulates intercellular junction proteins and facilitates transepithelial neutrophil and bacterial passage. Am J Physiol Gastrointest Liver Physiol 293:G178–G187. doi:10.1152/ajpgi.00535.2006

    Article  CAS  PubMed  Google Scholar 

  52. Kokai-Kun JF, McClane BA (1997) Deletion analysis of the Clostridium perfringens enterotoxin. Infect Immun 65:1014–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kominsky SL, Tyler B, Sosnowski J, Brady K, Doucet M, Nell D, Smedley JG III, McClane B, Brem H, Sukumar S (2007) Clostridium perfringens enterotoxin as a novel-targeted therapeutic for brain metastasis. Cancer Res 67:7977–7982. doi:10.1158/0008-5472.CAN-07-1314

    Article  CAS  PubMed  Google Scholar 

  54. Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P, Sukumar S (2004) Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol 164:1627–1633. doi:10.1016/S0002-9440(10)63721-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kondoh M, Takahashi A, Fujii M, Yagi K, Watanabe Y (2006) A novel strategy for a drug delivery system using a claudin modulator. Biol Pharm Bull 29:1783–1789. doi:10.1248/bpb.29.1783

    Article  CAS  PubMed  Google Scholar 

  56. Krause G, Protze J, Piontek J (2015) Assembly and function of claudins: structure-function relationships based on homology models and crystal structures. Semin Cell Dev Biol 42:3–12. doi:10.1016/j.semcdb.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  57. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645. doi:10.1016/j.bbamem.2007.10.018

    Article  CAS  PubMed  Google Scholar 

  58. Krueger S, Hundertmark T, Kuester D, Kalinski T, Peitz U, Roessner A (2007) Helicobacter pylori alters the distribution of ZO-1 and p120ctn in primary human gastric epithelial cells. Pathol Res Pract 203:433–444. doi:10.1016/j.prp.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  59. Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol Cell 20:3713–3724. doi:10.1091/mbc.E09-01-0080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP (2014) Importance of toxin a, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis 209:83–86. doi:10.1093/infdis/jit426

    Article  CAS  PubMed  Google Scholar 

  61. Loffler A, Labbe R (1986) Characterization of a parasporal inclusion body from sporulating, enterotoxin-positive Clostridium perfringens type A. J Bacteriol 165:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Los FC, Randis TM, Aroian RV, Ratner AJ (2013) Role of pore-forming toxins in bacterial infectious diseases. Microbiol Molecular Biol Rev 77:173–207. doi:10.1128/MMBR.00052-12

    Article  CAS  Google Scholar 

  63. Ma T, Verkman AS (1999) Aquaporin water channels in gastrointestinal physiology. J Physiol 517(Pt 2):317–326. doi:10.1111/j.1469-7793.1999.0317t.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mahendran V, Liu F, Riordan SM, Grimm MC, Tanaka MM, Zhang L (2016) Examination of the effects of Campylobacter concisus zonula occludens toxin on intestinal epithelial cells and macrophages. Gut Pathog 8:18. doi:10.1186/s13099-016-0101-9

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mancheno JM, Tateno H, Sher D, Goldstein IJ (2010) Laetiporus sulphureus lectin and aerolysin protein family. Adv Exp Med Biol 677:67–80

    Article  CAS  PubMed  Google Scholar 

  66. Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M, Nishi E, Furuse M (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124:548–555. doi:10.1242/jcs.072058

    Article  CAS  PubMed  Google Scholar 

  67. Matsuda M, Ozutsumi K, Sugimoto N, Iwahashi H (1986) Primary action of Clostridium perfringens type A enterotoxin on HeLa and Vero cells in the absence of extracellular calcium: rapid and characteristic changes in membrane permeability. Biochem Biophys Res Commun 141(2):704–710

    Article  CAS  PubMed  Google Scholar 

  68. Matsuda M, Sugimoto N (1979) Calcium-independent and dependent steps in action of Clostridium perfringens enterotoxin on Hela and Vero cells. Biochem and Biophys Res Commun 91:629–636. doi:10.1016/0006-291X(79)91568-7

    Article  CAS  Google Scholar 

  69. Matsuda T, Okada Y, Inagi E, Tanabe Y, Shimizu Y, Nagashima K, Sakurai J, Nagahama M, Tanaka S (2007) Enteritis necroticans ‘pigbel’ in a Japanese diabetic adult. Pathol Int 57:622–626. doi:10.1111/j.1440-1827.2007.02149.x

    Article  PubMed  Google Scholar 

  70. Matsuzawa T, Kuwae A, Abe A (2005) Enteropathogenic Escherichia coli type III effectors EspG and EspG2 alter epithelial paracellular permeability. Infect Immun 73:6283–6289. doi:10.1128/IAI.73.10.6283-6289.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. McDonel JL (1980) Clostridium perfringens toxins (type A, B, C, D, E). Pharmacol Ther 10:617–655. doi:10.1016/0163-7258(80)90031-5

    Article  CAS  PubMed  Google Scholar 

  72. McDonel JL, Demers GW (1982) In vivo effects of enterotoxin from Clostridium perfringens type A in the rabbit colon: binding vs. biologic activity. J Infect Dis 145:490–494. doi:10.1093/infdis/145.4.490

    Article  CAS  PubMed  Google Scholar 

  73. McDonel JL (1986) Toxins of Clostridium perfringens types a, B, C, D and E. In: Dorner F, Drews H (eds) Pharmacology of bacterial toxins. Pergamon Press, Oxford, pp. 477–517

    Google Scholar 

  74. Michl P, Buchholz M, Rolke M, Kunsch S, Lohr M, McClane B, Tsukita S, Leder G, Adler G, Gress TM (2001) Claudin-4: a new target for pancreatic cancer treatment using Clostridium perfringens enterotoxin. Gastroenterology 121:678–684. doi:10.1053/gast.2001.27124

    Article  CAS  PubMed  Google Scholar 

  75. Mogk S, Meiwes A, Shtopel S, Schraermeyer U, Lazarus M, Kubata B, Wolburg H, Duszenko M (2014) Cyclical appearance of African trypanosomes in the cerebrospinal fluid: new insights in how trypanosomes enter the CNS. PLoS One 9:e91372. doi:10.1371/journal.pone.0091372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Monturiol-Gross L, Flores-Diaz M, Campos-Rodriguez D, Mora R, Rodriguez-Vega M, Marks DL, Alape-Giron A (2014) Internalization of Clostridium perfringens alpha-toxin leads to ERK activation and is involved on its cytotoxic effect. Cell Microbiol 16:535–547. doi:10.1111/cmi.12237

    Article  CAS  PubMed  Google Scholar 

  77. Morin PJ (2007) Claudin proteins in ovarian cancer. Dis Markers 23:453–457. doi:10.1155/2007/674058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Morita K, Furuse M, Fujimoto K, Tsukita S (1999) Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci U S A 96:511–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mosley M, Knight J, Neesse A, Michl P, Iezzi M, Kersemans V, Cornelissen B (2015) Claudin-4 SPECT imaging allows detection of aplastic lesions in a mouse model of breast cancer. J Nucl Med 56:745–751. doi:10.2967/jnumed.114.152496

    Article  CAS  PubMed  Google Scholar 

  80. Muza-Moons MM, Schneeberger EE, Hecht GA (2004) Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 6:783–793. doi:10.1111/j.1462-5822.2004.00404.x

    Article  CAS  PubMed  Google Scholar 

  81. Nagahama M, Hayashi S, Morimitsu S, Sakurai J (2003) Biological activities and pore formation of Clostridium perfringens beta toxin in HL 60 cells. J Biol Chem 278:36934–36941. doi:10.1074/jbc.M306562200

    Article  CAS  PubMed  Google Scholar 

  82. Nagahama M, Sakurai J (1991) Distribution of labeled Clostridium perfringens epsilon toxin in mice. Toxicon 29:211–217

    Article  CAS  PubMed  Google Scholar 

  83. Nava P, Vidal JE (2016) The CpAL system regulates changes of the trans-epithelial resistance of human enterocytes during Clostridium perfringens type C infection. Anaerobe 39:143–149. doi:10.1016/j.anaerobe.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  84. Neesse A, Hahnenkamp A, Griesmann H, Buchholz M, Hahn SA, Maghnouj A, Fendrich V, Ring J, Sipos B, Tuveson DA, Bremer C, Gress TM, Michl P (2013) Claudin-4-targeted optical imaging detects pancreatic cancer and its precursor lesions. Gut 62:1034–1043. doi:10.1136/gutjnl-2012-302577

    Article  CAS  PubMed  Google Scholar 

  85. Nusrat A, von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69:1329–1336. doi:10.1128/IAI.69.3.1329-1336.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Oda M, Terao Y, Sakurai J, Nagahama M (2015) Membrane-binding mechanism of Clostridium perfringens alpha-toxin. Toxins (Basel) 7:5268–5275. doi:10.3390/toxins7124880

    Article  CAS  Google Scholar 

  87. Olsen SJ, MacKinnon LC, Goulding JS, Bean NH, Slutsker L (2000) Surveillance for foodborne-disease outbreaks—United States, 1993–1997. MMWR CDC Surveill Summ 49:1–62

    CAS  PubMed  Google Scholar 

  88. Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 108:16422–16427. doi:10.1073/pnas.1109772108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peralta-Ramirez J, Hernandez JM, Manning-Cela R, Luna-Munoz J, Garcia-Tovar C, Nougayrede JP, Oswald E, Navarro-Garcia F (2008) EspF interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infect Immun 76:3854–3868. doi:10.1128/IAI.00072-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Petit L, Gibert M, Gourch A, Bens M, Vandewalle A, Popoff MR (2003) Clostridium perfringens epsilon toxin rapidly decreases membrane barrier permeability of polarized MDCK cells. Cell Microbiol 5:155–164. doi:10.1046/j.1462-5822.2003.00262.x

    Article  CAS  PubMed  Google Scholar 

  91. Petrillo TM, Beck-Sague CM, Songer JG, Abramowsky C, Fortenberry JD, Meacham L, Dean AG, Lee H, Bueschel DM, Nesheim SR (2000) Enteritis necroticans (pigbel) in a diabetic child. N Engl J Med 342:1250–1253. doi:10.1056/NEJM200004273421704

    Article  CAS  PubMed  Google Scholar 

  92. Protze J, Eichner M, Piontek A, Dinter S, Rossa J, Blecharz KG, Vajkoczy P, Piontek J, Krause G (2015) Directed structural modification of Clostridium perfringens enterotoxin to enhance binding to claudin-5. Cell Mol Life Sci 72:1417–1432. doi:10.1007/s00018-014-1761-6

    Article  CAS  PubMed  Google Scholar 

  93. Rajabian T, Gavicherla B, Heisig M, Muller-Altrock S, Goebel W, Gray-Owen SD, Ireton K (2009) The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol 11:1212–1218. doi:10.1038/ncb1964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Richard JF, Mainguy G, Gibert M, Marvaud JC, Stiles BG, Popoff MR (2002) Transcytosis of iota-toxin across polarized CaCo-2 cells. Mol Microbiol 43:907–917. doi:10.1046/j.1365-2958.2002.02806.x

    Article  CAS  PubMed  Google Scholar 

  95. Robertson SL, Smedley JG III, Singh U, Chakrabarti G, Van Itallie CM, Anderson JM, McClane BA (2007) Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol 9:2734–2755. doi:10.1111/j.1462-5822.2007.00994.x

    Article  CAS  PubMed  Google Scholar 

  96. Robertson SL, Smedley JG, McClane BA (2010) Identification of a claudin-4 residue important for mediating the host cell binding and action of Clostridium perfringens enterotoxin. Inf ect Immun 78:505–517. doi:10.1128/IAI.00778-09

    Article  CAS  Google Scholar 

  97. Romanov V, Whyard TC, Waltzer WC, Gabig TG (2014) A claudin 3 and claudin 4-targeted Clostridium perfringens protoxin is selectively cytotoxic to PSA-producing prostate cancer cells. Cancer Lett 351:260–264. doi:10.1016/j.canlet.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  98. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:330–333. doi:10.1038/nature05765

    Article  CAS  PubMed  Google Scholar 

  99. Saeki R, Kondoh M, Kakutani H, Matsuhisa K, Takahashi A, Suzuki H, Kakamu Y, Watari A, Yagi K (2010) A claudin-targeting molecule as an inhibitor of tumor metastasis. J Pharmacol Exp Ther 334:576–582. doi:10.1124/jpet.110.168070

    Article  CAS  PubMed  Google Scholar 

  100. Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y, Tamura A, Tsukita S, Fujiyoshi Y (2015) Tight junctions. Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347:775–778. doi:10.1126/science.1261833

    Article  CAS  PubMed  Google Scholar 

  101. Sakaguchi T, Kohler H, Gu X, McCormick BA, Reinecker HC (2002) Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol 4:367–381. doi:10.1046/j.1462-5822.2002.00197.x

    Article  CAS  PubMed  Google Scholar 

  102. Sakurai J, Nagahama M, Oda M, Tsuge H, Kobayashi K (2009) Clostridium perfringens iota-toxin: structure and function. Toxins (Basel) 1:208–228. doi:10.3390/toxins1020208

    Article  CAS  Google Scholar 

  103. Santin AD, Bellone S, Siegel ER, McKenney JK, Thomas M, Roman JJ, Burnett A, Tognon G, Bandiera E, Pecorelli S (2007) Overexpression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in uterine carcinosarcomas. Clin Cancer Res 13:3339–3346

    Article  CAS  PubMed  Google Scholar 

  104. Santin AD, Cane S, Bellone S, Palmieri M, Siegel ER, Thomas M, Roman JJ, Burnett A, Cannon MJ, Pecorelli S (2005) Treatment of chemotherapy-resistant human ovarian cancer xenografts in C.B-17/SCID mice by intraperitoneal administration of Clostridium perfringens enterotoxin. Cancer Res 65:4334–4342. doi:10.1158/0008-5472.CAN-04-3472

    Article  CAS  PubMed  Google Scholar 

  105. Sarker MR, Carman RJ, McClane BA (1999) Inactivation of the gene (cpe) encoding Clostridium perfringens enterotoxin eliminates the ability of two cpe-positive C. perfringens type A human gastrointestinal disease isolates to affect rabbit ileal loops. Mol Microbiol 33:946–958. doi:10.1046/j.1365-2958.1999.01534.x

    Article  CAS  PubMed  Google Scholar 

  106. Sayeed S, Fernandez-Miyakawa ME, Fisher DJ, Adams V, Poon R, Rood JI, Uzal FA, McClane BA (2005) Epsilon-toxin is required for most Clostridium perfringens type D vegetative culture supernatants to cause lethality in the mouse intravenous injection model. Infect Immun 73:7413–7421. doi:10.1128/IAI.73.11.7413-7421.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sayeed S, Uzal FA, Fisher DJ, Saputo J, Vidal JE, Chen Y, Gupta P, Rood JI, McClane BA (2008) Beta toxin is essential for the intestinal virulence of Clostridium perfringens type C disease isolate CN3685 in a rabbit ileal loop model. Mol Microbiol 67:15–30. doi:10.1111/j.1365-2958.2007.06007.x

    Article  CAS  PubMed  Google Scholar 

  108. Schmidt E, Kelly SM, van der Walle CF (2007) Tight junction modulation and biochemical characterisation of the zonula occludens toxin C-and N-termini. FEBS Lett 581:2974–2980. doi:10.1016/j.febslet.2007.05.051

    Article  CAS  PubMed  Google Scholar 

  109. Schmitz H, Barmeyer C, Gitter AH, Wullstein F, Bentzel CJ, Fromm M, Riecken EO, Schulzke JD (2000) Epithelial barrier and transport function of the colon in ulcerative colitis. Ann N Y Acad Sci 915:312–326. doi:10.1111/j.1749-6632.2000.tb05259.x

    Article  CAS  PubMed  Google Scholar 

  110. Sherman S, Klein E, McClane BA (1994) Clostridium perfringens type A enterotoxin induces tissue damage and fluid accumulation in rabbit ileum. J Diarrhoeal Dis Res 12:200–207

    CAS  PubMed  Google Scholar 

  111. Shinoda T, Shinya N, Ito K, Ohsawa N, Terada T, Hirata K, Kawano Y, Yamamoto M, Kimura-Someya T, Yokoyama S, Shirouzu M (2016) Structural basis for disruption of claudin assembly in tight junctions by an enterotoxin. Sci Rep 6:33632. doi:10.1038/srep33632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shrestha A, McClane BA (2013) Human claudin-8 and -14 are receptors capable of conveying the cytotoxic effects of Clostridium perfringens enterotoxin. MBio 4(1):e00594–e00512. doi:10.1128/mBio.00594-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JP, Carruthers VB, Niles JC, Lourido S (2016) A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell 166(1423–1435):e1412. doi:10.1016/j.cell.2016.08.019

    Google Scholar 

  114. Simonovic I, Rosenberg J, Koutsouris A, Hecht G (2000) Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2:305–315. doi:10.1046/j.1462-5822.2000.00055.x

    Article  CAS  PubMed  Google Scholar 

  115. Singh U, Mitic LL, Wieckowski EU, Anderson JM, McClane BA (2001) Comparative biochemical and immunocytochemical studies reveal differences in the effects of Clostridium perfringens enterotoxin on polarized CaCo-2 cells versus Vero cells. J Biol Chem 276:33402–33412. doi:10.1074/jbc.M104200200

    Article  CAS  PubMed  Google Scholar 

  116. Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA (2000) CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J Biol Chem 275:18407–18417. doi:10.1074/jbc.M001530200

    Article  CAS  PubMed  Google Scholar 

  117. Smedley JG, Saputo J, Parker JC, Fernandez-Miyakawa ME, Robertson SL, McClane BA, Uzal FA (2008) Noncytotoxic Clostridium perfringens enterotoxin (CPE) variants localize CPE intestinal binding and demonstrate a relationship between CPE-induced cytotoxicity and enterotoxicity. Infect Immun 76:3793–3800. doi:10.1128/IAI.00460-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Smedley JG, Uzal FA, McClane BA (2007) Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect Immun 75:2381–2390. doi:10.1128/IAI.01737-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens Enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204

    Article  PubMed  PubMed Central  Google Scholar 

  120. Suzuki H, Nishizawa T, Tani K, Yamazaki Y, Tamura A, Ishitani R, Dohmae N, Tsukita S, Nureki O, Fujiyoshi Y (2014) Crystal structure of a claudin provides insight into the architecture of tight junctions. Science 344:304–307. doi:10.1126/science.1248571

    Article  CAS  PubMed  Google Scholar 

  121. Szczesny P, Iacovache I, Muszewska A, Ginalski K, van der Goot FG, Grynberg M (2011) Extending the aerolysin family: from bacteria to vertebrates. PLoS One 6:e20349. doi:10.1371/journal.pone.0020349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Takagishi T, Oda M, Kabura M, Kurosawa M, Tominaga K, Urano S, Ueda Y, Kobayashi K, Kobayashi T, Sakurai J, Terao Y, Nagahama M (2015) Clostridium perfringens alpha-toxin induces Gm1a clustering and Trka phosphorylation in the host cell membrane. PLoS One 10:e0120497. doi:10.1371/journal.pone.0120497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Takahashi A, Komiya E, Kakutani H, Yoshida T, Fujii M, Horiguchi Y, Mizuquchi H, Tsutsumi Y, Tsunoda SI, Koizumi N, Isoda K, Yagi K, Watanabe Y, Kondoh M (2008) Domain mapping of a claudin-4 modulator, the C-terminal region of C-terminal fragment of Clostridium perfringens enterotoxin, by site-directed mutagenesis. Biochem Pharmacol 75:1639–1648

    Article  CAS  PubMed  Google Scholar 

  124. Takahashi A, Kondoh M, Suzuki H, Yagi K (2011) Claudin as a target for drug development. Curr Med Chem 18:1861–1865. doi:10.1016/j.bcp.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  125. Takahashi A, Saito Y, Kondoh M, Matsushita K, Krug SM, Suzuki H, Tsujino H, Li X, Aoyama H, Matsuhisa K, Uno T, Fromm M, Hamakubo T, Yagi K (2012) Creation and biochemical analysis of a broad-specific claudin binder. Biomaterials 33:3464–3474. doi:10.1016/j.biomaterials.2012.01.017

    Article  CAS  PubMed  Google Scholar 

  126. Thanabalasuriar A, Kim J, Gruenheid S (2013) The inhibition of COPII trafficking is important for intestinal epithelial tight junction disruption during enteropathogenic Escherichia coli and Citrobacter rodentium infection. Microbes Infect 15:738–744. doi:10.1016/j.micinf.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  127. Thiagarajah JR, Donowitz M, Verkman AS (2015) Secretory diarrhoea: mechanisms and emerging therapies. Nat Rev Gastroenterol Hepatol 12:446–457. doi:10.1038/nrgastro.2015.111

    Article  PubMed  PubMed Central  Google Scholar 

  128. Thiagarajah JR, Verkman AS (2013) Chloride channel-targeted therapy for secretory diarrheas. Curr Opin Pharmacol 13:888–894. doi:10.1016/j.coph.2013.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Urbina P, Collado MI, Alonso A, Goni FM, Flores-Diaz M, Alape-Giron A, Ruysschaert JM, Lensink MF (2011) Unexpected wide substrate specificity of C. perfringens alpha-toxin phospholipase C. Biochim Biophys Acta 1808:2618–2627. doi:10.1016/j.bbamem.2011.06.008

    Article  CAS  PubMed  Google Scholar 

  130. Uzal FA, Freedman JC, Shrestha A, Theoret JR, Garcia J, Awad MM, Adams V, Moore RJ, Rood JI, McClane BA (2014) Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol 9:361–377. doi:10.2217/fmb.13.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Uzal FA, Saputo J, Sayeed S, Vidal JE, Fisher DJ, Poon R, Adams V, Fernandez-Miyakawa ME, Rood JI, McClane BA (2009) Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C enterotoxemias. Infect Immun 77:5291–5299. doi:10.1128/IAI.00825-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Uzzau S, Cappuccinelli P, Fasano A (1999) Expression of Vibrio cholerae zonula occludens toxin and analysis of its subcellular localization. Microb Pathog 27:377–385. doi:10.1006/mpat.1999.0312

    Article  CAS  PubMed  Google Scholar 

  133. Van Itallie CM, Betts L, Smedley JG, McClane BA, Anderson JM (2008) Structure of the claudin-binding domain of Clostridium perfringens enterotoxin. J Biol Chem 283:268–274. doi:10.1074/jbc.M708066200

    Article  CAS  PubMed  Google Scholar 

  134. Veshnyakova A, Piontek J, Protze J, Waziri N, Heise I, Krause G (2012) Mechanism of Clostridium perfringens enterotoxin interaction with claudin-3/-4 protein suggests structural modifications of the toxin to target specific claudins. J Biol Chem 287:1698–1708

    Article  CAS  PubMed  Google Scholar 

  135. Veshnyakova A, Protze J, Rossa J, Blasig I, Krause G, Piontek J (2010) On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins 2:1336–1356. doi:10.1074/jbc.M111.312165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vidal JE, McClane BA, Saputo J, Parker J, Uzal FA (2008) Effects of Clostridium perfringens beta-toxin on the rabbit small intestine and colon. Infect Immun 76:4396–4404. doi:10.1128/IAI.00547-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Viswanathan VK, Koutsouris A, Lukic S, Pilkinton M, Simonovic I, Simonovic M, Hecht G (2004) Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect Immun 72:3218–3227. doi:10.1128/IAI.72.6.3218-3227.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Walther W, Petkov S, Kuvardina ON, Aumann J, Kobelt D, Fichtner I, Lemm M, Piontek J, Blasig IE, Stein U, Schlag PM (2012) Novel Clostridium perfringens enterotoxin suicide gene therapy for selective treatment of claudin-3- and -4-overexpressing tumors. Gene Ther 19:494–503. doi:10.1038/gt.2011.136

    Article  CAS  PubMed  Google Scholar 

  139. Winkler L, Gehring C, Wenzel A, Muller SL, Piehl C, Krause G, Blasig IE, Piontek J (2009) Molecular determinants of the interaction between Clostridium perfringens enterotoxin fragments and claudin-3. J Biol Chem 284:18863–18872. doi:10.1074/jbc.M109.008623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wu Z, Nybom P, Magnusson KE (2000) Distinct effects of Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell Microbiol 2:11–17. doi:10.1046/j.1462-5822.2000.00025.x

    Article  CAS  PubMed  Google Scholar 

  141. Yamahashi Y, Saito Y, Murata-Kamiya N, Hatakeyama M (2011) Polarity-regulating kinase partitioning-defective 1b (PAR1b) phosphorylates guanine nucleotide exchange factor H1 (GEF-H1) to regulate RhoA-dependent actin cytoskeletal reorganization. J Biol Chem 286:44576–44584. doi:10.1074/jbc.M111.267021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yelland TS, Naylor CE, Bagoban T, Savva CG, Moss DS, McClane BA, Blasig IE, Popoff M, Basak AK (2014) Structure of a C. perfringens enterotoxin mutant in complex with a modified claudin-2 extracellular loop 2. J Mol Biol 426:3134–3147. doi:10.1016/j.jmb.2014.07.001

    Article  CAS  PubMed  Google Scholar 

  143. Yuan XQ, Lin XJ, Manorek G, Kanatani I, Cheung LH, Rosenblum MG, Howell SB (2009) Recombinant CPE fused to tumor necrosis factor targets human ovarian cancer cells expressing the claudin-3 and claudin-4 receptors. Mol Cancer Ther 8:1906–1915. doi:10.1158/1535-7163.MCT-09-0106

    Article  CAS  PubMed  Google Scholar 

  144. Zhang J, Ni C, Yang Z, Piontek A, Chen H, Wang S, Fan Y, Qin Z, Piontek J (2015) Specific binding of Clostridium perfringens enterotoxin fragment to claudin-b and modulation of zebrafish epidermal barrier. Exp Dermatol 24:605–610. doi:10.1111/exd.12728

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support by Sonnenfeld-Stiftung, Berlin; Wilhelm Sander-Stiftung, Munich; and Deutsche Forschungsgemeinschaft PI837/4-1 and KR1273/8-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Piontek.

Additional information

This article is published as part of the Special Issue on Claudins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eichner, M., Protze, J., Piontek, A. et al. Targeting and alteration of tight junctions by bacteria and their virulence factors such as Clostridium perfringens enterotoxin. Pflugers Arch - Eur J Physiol 469, 77–90 (2017). https://doi.org/10.1007/s00424-016-1902-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1902-x

Keywords

Navigation