Skip to main content

Advertisement

Log in

Piezo1-dependent regulation of urinary osmolarity

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The collecting duct (CD) is the final segment of the kidney involved in the fine regulation of osmotic and ionic balance. During dehydration, arginine vasopressin (AVP) stimulates the expression and trafficking of aquaporin 2 (AQP2) to the apical membrane of CD principal cells, thereby allowing water reabsorption from the primary urine. Conversely, when the secretion of AVP is lowered, as for instance upon water ingestion or as a consequence of diabetes insipidus, the CD remains water impermeable leading to enhanced diuresis and urine dilution. In addition, an AVP-independent mechanism of urine dilution is also at play when fasting. Piezo1/2 are recently discovered essential components of the non-selective mechanically activated cationic channels. Using quantitative PCR analysis and taking advantage of a β-galactosidase reporter mouse, we demonstrate that Piezo1 is preferentially expressed in CD principal cells of the inner medulla at the adult stage, unlike Piezo2. Remarkably, siRNAs knock-down or conditional genetic deletion of Piezo1 specifically in renal cells fully suppresses activity of the stretch-activated non-selective cationic channels (SACs). Piezo1 in CD cells is dispensable for urine concentration upon dehydration. However, urinary dilution and decrease in urea concentration following rehydration are both significantly delayed in the absence of Piezo1. Moreover, decreases in urine osmolarity and urea concentration associated with fasting are fully impaired upon Piezo1 deletion in CD cells. Altogether, these findings indicate that Piezo1 is critically required for SAC activity in CD principal cells and is implicated in urinary osmoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  CAS  PubMed  Google Scholar 

  2. Amlal H, Chen Q, Habo K, Wang Z, Soleimani M (2001) Fasting downregulates renal water channel AQP2 and causes polyuria. Am J Physiol Renal Physiol 280:F513–523

    CAS  PubMed  Google Scholar 

  3. Bae C, Gnanasambandam R, Nicolai C, Sachs F, Gottlieb PA (2013) Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. Proc Natl Acad Sci U S A 110:E1162–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bae C, Gottlieb PA, Sachs F (2013) Human Piezo1: removing inactivation. Biophys J 105:880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bae C, Sachs F, Gottlieb PA (2011) The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50:6295–6300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blount MA, Mistry AC, Frohlich O, Price SR, Chen G, Sands JM, Klein JD (2008) Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol Renal Physiol 295:F295–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, and Patapoutian A (2015) Piezo1 links mechanical forces to red blood cell volume. Elife 4

  8. Chebib FT, Sussman CR, Wang X, Harris PC, Torres VE (2015) Vasopressin and disruption of calcium signalling in polycystic kidney disease. Nat Rev Nephrol 11:451–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chou CL, Yu MJ, Kassai EM, Morris RG, Hoffert JD, Wall SM, Knepper MA (2008) Roles of basolateral solute uptake via NKCC1 and of myosin II in vasopressin-induced cell swelling in inner medullary collecting duct. Am J Physiol Renal Physiol 295:F192–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P, Patapoutian A (2015) Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 6:7223

    Article  PubMed  PubMed Central  Google Scholar 

  12. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ecelbarger CA, Chou CL, Lee AJ, DiGiovanni SR, Verbalis JG, Knepper MA (1998) Escape from vasopressin-induced antidiuresis: role of vasopressin resistance of the collecting duct. Am J Physiol 274:F1161–1166

    CAS  PubMed  Google Scholar 

  14. Fenton RA, Praetorius J (2011) Molecular physiology of the medullary collecting duct. Compr Physiol 1:1031–1056

    PubMed  Google Scholar 

  15. Fotiou E, Martin-Almedina S, Simpson MA, Lin S, Gordon K, Brice G, Atton G, Jeffery I, Rees DC, Mignot C, Vogt J, Homfray T, Snyder MP, Rockson SG, Jeffery S, Mortimer PS, Mansour S, Ostergaard P (2015) Novel mutations in PIEZO1 cause an autosomal recessive generalized lymphatic dysplasia with non-immune hydrops fetalis. Nat Commun 6:8085

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fradet Y, Lebel M, Grose JH, Talbot J, Charrois R (1988) Renal prostaglandins in postobstructive diuresis. Comparative study of unilateral and bilateral obstruction in conscious dogs. Prostaglandins Leukot Essent Fatty Acids 31:123–129

    Article  CAS  PubMed  Google Scholar 

  17. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature

  18. Gottlieb PA, Bae C, Sachs F (2012) Gating the mechanical channel Piezo1: a comparison between whole-cell and patch recording. Channels (Austin) 6:282–289

    Article  CAS  Google Scholar 

  19. Hasler U, Mordasini D, Bens M, Bianchi M, Cluzeaud F, Rousselot M, Vandewalle A, Feraille E, Martin PY (2002) Long term regulation of aquaporin-2 expression in vasopressin-responsive renal collecting duct principal cells. J Biol Chem 277:10379–10386

    Article  CAS  PubMed  Google Scholar 

  20. Hoban CA, Black LN, Ordas RJ, Gumina DL, Pulous FE, Sim JH, Sands JM, Blount MA (2015) Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct. Am J Physiol Renal Physiol 308:F49–55

    Article  CAS  PubMed  Google Scholar 

  21. IAndolfo I, Alper SL, De Franceschi L, Auriemma C, Russo R, De Falco L, Vallefuoco F, Esposito MR, Vandorpe DH, Shmukler BE, Narayan R, Montanaro D, D'Armiento M, Vetro A, Limongelli I, Zuffardi O, Glader BE, Schrier SL, Brugnara C, Stewart GW, Delaunay J, Iolascon A (2013) Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood 121:3925–3935

    Article  Google Scholar 

  22. Jackson BA, Braun-Werness JL, Kusano E, Dousa TP (1983) Concentrating defect in the adrenalectomized rat. Abnormal vasopressin-sensitive cyclic adenosine monophosphate metabolism in the papillary collecting duct. J Clin Invest 72:997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jensen ME, Odgaard E, Christensen MH, Praetorius HA, Leipziger J (2007) Flow-induced [Ca2+]i increase depends on nucleotide release and subsequent purinergic signaling in the intact nephron. J Am Soc Nephrol 18:2062–2070

    Article  CAS  PubMed  Google Scholar 

  24. Kinne RK, Boese SH, Kinne-Saffran E, Ruhfus B, Tinel H, Wehner F (1996) Osmoregulation in the renal papilla: membranes, messengers and molecules. Kidney Int 49:1686–1689

    Article  CAS  PubMed  Google Scholar 

  25. Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lantinga-van Leeuwen IS, Leonhard WN, van de Wal A, Breuning MH, Verbeek S, de Heer E, Peters DJ (2006) Transgenic mice expressing tamoxifen-inducible Cre for somatic gene modification in renal epithelial cells. Genesis 44:225–232

    Article  CAS  PubMed  Google Scholar 

  27. Li YH, Eto K, Horikawa S, Uchida S, Sasaki S, Li XJ, Noda Y (2009) Aquaporin-2 regulates cell volume recovery via tropomyosin. Int J Biochem Cell Biol 41:2466–2476

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ, Sedo A, Hyman AJ, McKeown L, Young RS, Yuldasheva NY, Majeed Y, Wilson LA, Rode B, Bailey MA, Kim HR, Fu Z, Carter DA, Bilton J, Imrie H, Ajuh P, Dear TN, Cubbon RM, Kearney MT, Prasad RK, Evans PC, Ainscough JF, Beech DJ (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lukacs V, Mathur J, Mao R, Bayrak-Toydemir P, Procter M, Cahalan SM, Kim HJ, Bandell M, Longo N, Day RW, Stevenson DA, Patapoutian A, Krock BL (2015) Impaired PIEZO1 function in patients with a novel autosomal recessive congenital lymphatic dysplasia. Nat Commun 6:8329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  31. Nilsson L, Madsen K, Topcu SO, Jensen BL, Frokiaer J, Norregaard R (2012) Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. Am J Physiol Renal Physiol 302:F1430–1439

    Article  CAS  PubMed  Google Scholar 

  32. Ostergaard M, Christensen M, Nilsson L, Carlsen I, Frokiaer J, Norregaard R (2014) ROS dependence of cyclooxygenase-2 induction in rats subjected to unilateral ureteral obstruction. Am J Physiol Renal Physiol 306:F259–270

    Article  PubMed  Google Scholar 

  33. Patel A, Honore E (2010) Polycystins and renovascular mechanosensory transduction. Nat Rev Nephrol 6:530–538

    Article  CAS  PubMed  Google Scholar 

  34. Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M, Jodar M, Tauc M, Duranton C, Paulais M, Teulon J, Honore E, Patel A (2013) Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peyronnet R, Sharif-Naeini R, Folgering JH, Arhatte M, Jodar M, El Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters DJ, Somlo S, Sachs F, Patel A, Honore E, Duprat F (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K(2P) channels. Cell Rep 1:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520

    Article  PubMed  PubMed Central  Google Scholar 

  37. Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  38. Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, Xu J, Mathur J, Bandell M, Coste B, Li YS, Chien S, Patapoutian A (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111:10347–10352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Begay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Retailleau K, Arhatte M, Demolombe S, Peyronnet R, Baudrie V, Jodar M, Bourreau J, Henrion D, Offermanns S, Nakamura F, Feng Y, Patel A, Duprat F, Honore E (2016) Arterial myogenic activation through smooth muscle filamin A. Cell Rep

  41. Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E (2015) Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling. Cell Rep 13:1161–1171

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz MJ, Kokko JP (1980) Urinary concentrating defect of adrenal insufficiency. Permissive role of adrenal steroids on the hydroosmotic response across the rabbit cortical collecting tubule. J Clin Investig 66:234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sharif Naeini R, Folgering J, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honoré E (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596

    Article  CAS  PubMed  Google Scholar 

  44. Weinbaum S, Duan Y, Satlin LM, Wang T, Weinstein AM (2010) Mechanotransduction in the renal tubule. Am J Physiol Renal Physiol 299:F1220–1236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilke C, Sheriff S, Soleimani M, Amlal H (2005) Vasopressin-independent regulation of collecting duct aquaporin-2 in food deprivation. Kidney Int 67:201–216

    Article  CAS  PubMed  Google Scholar 

  46. Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B, Rinehart J, Gallagher PG (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120:1908–1915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the ANR 2008 du gène à la physiopathologie; des maladies rares aux maladies communes, to the ANR 2011 physiologie, physiopathologie, santé publique, to the Fondation de la recherche médicale, to the Fondation de recherche sur l’hypertension artérielle, to the Fondation de France, to the Association Française contre les Myopathies (RP), to the Association pour l’information et la recherche sur les maladies rénales génétiques France, to the Région Provence Alpes Côte d’Azur, to the Société Française d’hypertension artérielle, to the Université de Nice Sophia Antipolis, and to the CNRS for financial support. JRM was a recipient of fellowship attributed by the Lefoulon-Delalande Fondation. We are grateful to Dr. Dorien Peters for sharing the KsprCre* mice with us and to Dr. Jacques Teulon for his help with the electrophysiology of isolated renal tubules.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Honoré.

Ethics declarations

All experiments were performed according to policies on the care and use of laboratory animals of the European Community Legislation. The study was approved by the local committee for ethical and safety issues (CIEPAL-Azur).

Additional information

Eric Honoré is the co-last author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Reversal potential of the SAC current in outer medulla tubule. Cell attached patch clamp recordings at the basal side of an isolated outer medulla collecting duct with a holding potential of -80 mV (top trace). Zero current is indicated by a dashed line and inward SAC currents are elicited in the control condition at increased negative pressure. Pressure pulses of increasing magnitude were applied at the back of the patch pipette using a fast pressure clamp system (bottom trace). At a holding potential of 0 mV (same patch), no SAC current was seen (middle trace). (DOCX 50 kb)

Fig. S2

Water intake and urine volume in control and Piezo1 knock-out mice before, during and after water deprivation. a Twenty-four-hour water intake before, during and after (1 and 24 hours) drinking deprivation in control (white bars) and knock-out (KspCre* Piezo1lox/lox, black bars) mice. b Urine volume. Data are presented as mean ± SEM. Number of mice is indicated in the bar graphs. (DOCX 64 kb)

Fig. S3

Food intake and body weight in control and Piezo1 knock-out mice before, during and after water deprivation. a Twenty-four-hour food intake before, during and 24 hours after drinking deprivation in control (white bars) and knock-out (KspCre* Piezo1lox/lox, black bars) mice. b Body weight. Data are presented as mean ± SEM. Number of mice is indicated in the bar graphs. (DOCX 54 kb)

Fig. S4

Water intake and urine volume in control and Piezo1 knock-out mice before and after fasting. a Twenty-four-hour water intake before and after food deprivation in control (white bars) and knock-out (KspCre* Piezo1lox/lox, black bars) mice. b Urine volume. Data are presented as mean ± SEM. Number of mice is indicated in the bar graphs. (DOCX 52 kb)

Fig. S5

Food intake and body weight in control and Piezo1 knock-out mice before and after fasting. a Twenty-four-hour food intake before food deprivation in control (white bars) and knock-out (KspCre* Piezo1lox/lox, black bars) mice. b Body weight before and after 24 h-food deprivation. Data are presented as mean ± SEM. Number of mice is indicated in the bar graphs. (DOCX 53 kb)

Fig. S6

Validation of the antibodies directed against total AQP2 and UT-A1 in the inner medulla (left) versus the cortex (right) of control kidneys. The predicted molecular weights of the non-glycosylated forms of AQP2 and UT-A1 are indicated by red arrows. The blot illustrated on top has first been probed with an antibody against GAPDH (visible as light white bands), then stripped and re-probed with the antibody against AQP2. No signal is detected, as expected, in the cortex with both AQP2 and UT-A1 antibodies. GAPDH expression was used as a loading control (bottom). (DOCX 138 kb)

Fig. S7

AQP2 and UT-A1 total protein expression in the inner medulla are independent of Piezo1 (WT: TAM-injected control mice, KO: TAM-injected KspCre* Piezo1del/lox mice). b AQP2 protein expression normalized to GAPDH in the inner medulla of TAM-injected control (white bars) and TAM-injected KspCre* Piezo1del/lox (black bars) mice. No significant difference is seen between both genotypes. Glycosylated, non-glycosylated and total AQP2 protein expression has been quantified. c UT-A1 protein expression (non-glycosylated) normalized to GAPDH in the inner medulla of TAM-injected control (white bars) and TAM-injected KspCre* Piezo1del/lox (black bars) mice. No significant difference is seen between both genotypes. GAPDH expression was used as a loading control (bottom). (DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.R., Penton, D., Peyronnet, R. et al. Piezo1-dependent regulation of urinary osmolarity. Pflugers Arch - Eur J Physiol 468, 1197–1206 (2016). https://doi.org/10.1007/s00424-016-1811-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1811-z

Keywords

Navigation