Skip to main content

Advertisement

Log in

A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The mammalian homeostatic oxygen sensing system (HOSS) initiates changes in vascular tone, respiration, and neurosecretion that optimize oxygen uptake and tissue oxygen delivery within seconds of detecting altered environmental or arterial PO2. The HOSS includes carotid body type 1 cells, adrenomedullary cells, neuroepithelial bodies, and smooth muscle cells (SMCs) in pulmonary arteries (PAs), ductus arteriosus (DA), and fetoplacental arteries. Hypoxic pulmonary vasoconstriction (HPV) optimizes ventilation–perfusion matching. In utero, HPV diverts placentally oxygenated blood from the non-ventilated lung through the DA. At birth, increased alveolar and arterial oxygen tension dilates the pulmonary vasculature and constricts the DA, respectively, thereby transitioning the newborn to an air-breathing organism. Though modulated by endothelial-derived relaxing and constricting factors, O2 sensing is intrinsic to PASMCs and DASMCs. Within the SMC’s dynamic mitochondrial network, changes in PO2 alter the reduction–oxidation state of redox couples (NAD+/NADH, NADP+/NADPH) and the production of reactive oxygen species, ROS (e.g., H2O2), by complexes I and III of the electron transport chain (ETC). ROS and redox couples regulate ion channels, transporters, and enzymes, changing intracellular calcium [Ca2+]i and calcium sensitivity and eliciting homeostatic responses to hypoxia. In PASMCs, hypoxia inhibits ROS production and reduces redox couples, thereby inhibiting O2-sensitive voltage-gated potassium (Kv) channels, depolarizing the plasma membrane, activating voltage-gated calcium channels (CaL), increasing [Ca2+]i, and causing vasoconstriction. In DASMCs, elevated PO2 causes mitochondrial fission, increasing ETC complex I activity and ROS production. The DASMC’s downstream response to elevated PO2 (Kv channel inhibition, CaL activation, increased [Ca2+]i, and rho kinase activation) is similar to the PASMC’s hypoxic response. Impaired O2 sensing contributes to human diseases, including pulmonary arterial hypertension and patent DA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. J Physiol 570:53–8. doi:10.1113/jphysiol.2005.098855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Alzamora-Castro V, Battilana G, Abugattas R, Sialer S (1960) Patent ductus arteriosus and high altitude. Am J Cardiol 5:761–3

    Article  PubMed  CAS  Google Scholar 

  3. Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–51. doi:10.1056/NEJMra1215233

    Article  PubMed  CAS  Google Scholar 

  4. Archer SL, Gomberg-Maitland M, Maitland ML, Rich S, Garcia JG, Weir EK (2008) Mitochondrial metabolism, redox signaling, and fusion: a mitochondria-ROS-HIF-1alpha-Kv1.5 O2-sensing pathway at the intersection of pulmonary hypertension and cancer. Am J Physiol Heart Circ Physiol 294:H570–8. doi:10.1152/ajpheart.01324.2007

    Article  PubMed  CAS  Google Scholar 

  5. Archer SL, Huang J, Henry T, Peterson D, Weir EK (1993) A redox-based O2 sensor in rat pulmonary vasculature. Circ Res 73:1100–12

    Article  PubMed  CAS  Google Scholar 

  6. Archer SL, Huang JM, Reeve HL, Hampl V, Tolarova S, Michelakis E, Weir EK (1996) Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res 78:431–42

    Article  PubMed  CAS  Google Scholar 

  7. Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED (2001) Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J 15:1801–3

    PubMed  CAS  Google Scholar 

  8. Archer SL, Nelson DP, Weir EK (1985) Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol 67:1903–11

    Google Scholar 

  9. Archer SL, Nelson DP, Weir EK (1985) Detection of activated O2 species in vitro and in rat lungs by chemiluminescence. J Appl Physiol 67:1912–21

    Google Scholar 

  10. Archer SL, Weir EK, Wilkins MR (2010) Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 121:2045–66. doi:10.1161/CIRCULATIONAHA.108.847707

    Article  PubMed  PubMed Central  Google Scholar 

  11. Archer SL, Will JA, Weir EK (1986) Redox status in the control of pulmonary vascular tone. Herz 11:127–41

    PubMed  CAS  Google Scholar 

  12. Archer SL, Wu XC, Thebaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED (2004) Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 95:308–18. doi:10.1161/01.RES.0000137173.42723.fb

    Article  PubMed  CAS  Google Scholar 

  13. Baraka AS, Taha SK, Yaacoub CI (2003) Alarming hypoxemia during one-lung ventilation in a patient with respiratory bronchiolitis-associated interstitial lung disease. Can J Anaesth 50:411–4. doi:10.1007/BF03021041

    Article  PubMed  Google Scholar 

  14. Becker LB, vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Physiol 277:H2240–6

    PubMed  CAS  Google Scholar 

  15. Bonnet S, Michelakis ED, Porter CJ, Andrade-Navarro MA, Thebaud B, Bonnet S, Haromy A, Harry G, Moudgil R, McMurtry MS, Weir EK, Archer SL (2006) An abnormal mitochondrial-hypoxia inducible factor-1alpha-Kv channel pathway disrupts oxygen sensing and triggers pulmonary arterial hypertension in fawn hooded rats: similarities to human pulmonary arterial hypertension. Circulation 113:2630–41. doi:10.1161/CIRCULATIONAHA.105.609008

    Article  PubMed  CAS  Google Scholar 

  16. Bradford JR, Dean HP (1894) The pulmonary circulation1. J Physiol 16:34–158. doi:10.1113/jphysiol.1894.sp000493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brunner M, Kodirov SA, Mitchell GF, Buckett PD, Shibata K, Folco EJ, Baker L, Salama G, Chan DP, Zhou J, Koren G (2003) In vivo gene transfer of Kv1.5 normalizes action potential duration and shortens QT interval in mice with long QT phenotype. Am J Physiol Heart Circ Physiol 285:H194–203. doi:10.1152/ajpheart.00971.2002

    Article  PubMed  CAS  Google Scholar 

  18. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–8. doi:10.1074/jbc.M001914200

    Article  PubMed  CAS  Google Scholar 

  19. Coceani F, Armstrong C, Kelsey L (1989) Endothelin is a potent constrictor of the lamb ductus arteriosus. Can J Physiol Pharmacol 67:902–904. doi:10.1139/y89-141

    Article  PubMed  CAS  Google Scholar 

  20. Coceani F, Kelsey L, Seidlitz E (1992) Evidence for an effector role of endothelin in closure of the ductus arteriosus at birth. Can J Physiol Pharmacol 70:1061–4

    Article  PubMed  CAS  Google Scholar 

  21. Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honore E (1995) Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci U S A 92:11796–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–71. doi:10.1093/emboj/16.17.5464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Elton TS, Oparil S, Taylor GR, Hicks PH, Yang R, Jin H, Chen Y (1992) Normobaric hypoxia stimulates endothelin-1 gene expression in the rat. Am J Physiol-Regulatory, Integrative Comp Physiol 263:R1260–R1264

    CAS  Google Scholar 

  24. Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320. doi:10.1111/j.1748-1716.1946.tb00389.x

    Article  Google Scholar 

  25. Fay FS (1971) Guinea pig ductus arteriosus. I. Cellular and metabolic basis for oxygen sensitivity. Am J Physiol 221:470–9

    PubMed  CAS  Google Scholar 

  26. Feng J, Wible B, Li GR, Wang Z, Nattel S (1997) Antisense oligodeoxynucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ Res 80:572–9

    Article  PubMed  CAS  Google Scholar 

  27. Franco-Obregon A, Lopez-Barneo J (1996) Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol 491(Pt 2):511–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Franco-Obregón A, Urena J, López-Barneo J (1995) Oxygen-sensitive calcium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc Natl Acad Sci 92:4715–4719

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gardener MJ, Johnson IT, Burnham MP, Edwards G, Heagerty AM, Weston AH (2004) Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol 142:192–202. doi:10.1038/sj.bjp.0705691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cocheme HM, Murphy MP, Dominiczak AF (2009) Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 54:322–8. doi:10.1161/HYPERTENSIONAHA.109.130351

    Article  PubMed  CAS  Google Scholar 

  31. Gupte SA, Wolin MS (2008) Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 10:1137–52. doi:10.1089/ars.2007.1995

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Gurney AM, Osipenko ON, MacMillan D, McFarlane KM, Tate RJ, Kempsill FE (2003) Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 93:957–64. doi:10.1161/01.RES.0000099883.68414.61

    Article  PubMed  CAS  Google Scholar 

  33. Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT (2005) Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 1:401–8. doi:10.1016/j.cmet.2005.05.001

    Article  PubMed  CAS  Google Scholar 

  34. Hamrick SE, Hansmann G (2010) Patent ductus arteriosus of the preterm infant. Pediatrics 125:1020–30. doi:10.1542/peds.2009-3506

    Article  PubMed  Google Scholar 

  35. Harder DR, Madden JA, Dawson C (1985) Hypoxic induction of Ca2 + −dependent action potentials in small pulmonary arteries of the cat. J Appl Physiol 59:1389–93

    PubMed  CAS  Google Scholar 

  36. Hasunuma K, Rodman DM, McMurtry IF (1991) Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis 144:884–7. doi:10.1164/ajrccm/144.4.884

    Article  PubMed  CAS  Google Scholar 

  37. Henry TD, Archer SL, Nelson D, Weir EK, From A (1990) Enhanced chemiluminescence as a measure of oxygen-derived free radical generation during ischemia and reperfusion. Circ Res 67:1453–1461

    Article  PubMed  CAS  Google Scholar 

  38. Henry TD, Archer SL, Nelson D, Weir EK, From AH (1993) Postischemic oxygen radical production varies with duration of ischemia. Am J Physiol 264:H1478–84

    PubMed  CAS  Google Scholar 

  39. Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–900

    Article  PubMed  Google Scholar 

  40. Hong Z, Kutty S, Toth PT, Marsboom G, Hammel JM, Chamberlain C, Ryan JJ, Zhang HJ, Sharp WW, Morrow E, Trivedi K, Weir EK, Archer SL (2013) Role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in oxygen sensing and constriction of the ductus arteriosus. Circ Res 112:802–15. doi:10.1161/CIRCRESAHA.111.300285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hulme JT, Coppock EA, Felipe A, Martens JR, Tamkun MM (1999) Oxygen sensitivity of cloned voltage-gated K(+) channels expressed in the pulmonary vasculature. Circ Res 85:489–97

    Article  PubMed  CAS  Google Scholar 

  42. Jensen KS, Micco AJ, Czartolomna J, Latham L, Voelkel NF (1985) Rapid onset of hypoxic vasoconstriction in isolated lungs. J Appl Physiol 72:2018–23

    Google Scholar 

  43. Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–14. doi:10.1016/j.redox.2014.05.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kim SJ, Widenmaier SB, Choi WS, Nian C, Ao Z, Warnock G, McIntosh CH (2012) Pancreatic beta-cell prosurvival effects of the incretin hormones involve post-translational modification of Kv2.1 delayed rectifier channels. Cell Death Differ 19:333–44. doi:10.1038/cdd.2011.102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Kitterman JA, Edmunds LH Jr, Gregory GA, Heymann MA, Tooley WH, Rudolph AM (1972) Patent ducts arteriosus in premature infants. Incidence, relation to pulmonary disease and management. N Engl J Med 287:473–7. doi:10.1056/NEJM197209072871001

    Article  PubMed  CAS  Google Scholar 

  46. Li H, Elton T, Chen Y, Oparil S (1994) Increased endothelin receptor gene expression in hypoxic rat lung. Am J Physiol-Lung Cell Mol Physiol 266:L553–L560

    CAS  Google Scholar 

  47. Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241:580–2

    Article  PubMed  CAS  Google Scholar 

  48. Ma L, Roman-Campos D, Austin ED, Eyries M, Sampson KS, Soubrier F, Germain M, Tregouet DA, Borczuk A, Rosenzweig EB, Girerd B, Montani D, Humbert M, Loyd JE, Kass RS, Chung WK (2013) A novel channelopathy in pulmonary arterial hypertension. N Engl J Med 369:351–61. doi:10.1056/NEJMoa1211097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. MacDonald PE, Wheeler MB (2003) Voltage-dependent K(+) channels in pancreatic beta cells: role, regulation and potential as therapeutic targets. Diabetologia 46:1046–62. doi:10.1007/s00125-003-1159-8

    Article  PubMed  CAS  Google Scholar 

  50. Madden JA, Dawson CA, Harder DR (1985) Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol (1985) 59:113–8

    CAS  Google Scholar 

  51. Madden JA, Vadula MS, Kurup VP (1992) Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol 263:L384–93

    PubMed  CAS  Google Scholar 

  52. Marsboom G, Toth PT, Ryan JJ, Hong Z, Wu X, Fang YH, Thenappan T, Piao L, Zhang HJ, Pogoriler J, Chen Y, Morrow E, Weir EK, Rehman J, Archer SL (2012) Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110:1484–97. doi:10.1161/CIRCRESAHA.111.263848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mays DJ, Foose JM, Philipson LH, Tamkun MM (1995) Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest 96:282–92. doi:10.1172/JCI118032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. McDonnell TJ, Westcott J, Czartolomna J, Voelkel NF (1990) Role of peptidoleukotrienes in hypoxic pulmonary vasoconstriction in rats. Am J Physiol-Heart Circ Physiol 259:H751–H758

    CAS  Google Scholar 

  55. McManus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci 31:15703–15. doi:10.1523/JNEUROSCI.0552-11.2011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. McMurphy DM, Heymann MA, Rudolph AM, Melmon KL (1972) Developmental changes in constriction of the ductus arteriosus: responses to oxygen and vasoactive agents in the isolated ductus arteriosus of the fetal lamb. Pediatr Res 6:231–8. doi:10.1203/00006450-197204000-00004

    Article  PubMed  CAS  Google Scholar 

  57. McMurtry IF (1985) BAY K 8644 potentiates and A23187 inhibits hypoxic vasoconstriction in rat lungs. Am J Physiol 249:H741–6

    PubMed  CAS  Google Scholar 

  58. McMurtry IF, Davidson AB, Reeves JT, Grover RF (1976) Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 38:99–104

    Article  PubMed  CAS  Google Scholar 

  59. McMurtry IF, Petrun MD, Reeves JT (1978) Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am J Physiol 235:H104–9

    PubMed  CAS  Google Scholar 

  60. Mercer JR, Yu E, Figg N, Cheng KK, Prime TA, Griffin JL, Masoodi M, Vidal-Puig A, Murphy MP, Bennett MR (2012) The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic syndrome in ATM+/−/ApoE−/− mice. Free Radic Biol Med 52:841–9. doi:10.1016/j.freeradbiomed.2011.11.026

    Article  PubMed  CAS  Google Scholar 

  61. Michelakis ED, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer SL (2002) Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 90:1307–15

    Article  PubMed  CAS  Google Scholar 

  62. Michelakis E, Rebeyka I, Bateson J, Olley P, Puttagunta L, Archer S (2000) Voltage-gated potassium channels in human ductus arteriosus. Lancet 356:134–7. doi:10.1016/S0140-6736(00)02452-1

    Article  PubMed  CAS  Google Scholar 

  63. Michelakis ED, Rebeyka I, Wu X, Nsair A, Thebaud B, Hashimoto K, Dyck JR, Haromy A, Harry G, Barr A, Archer SL (2002) O2 sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circ Res 91:478–86

    Article  PubMed  CAS  Google Scholar 

  64. Michelakis ED, Thebaud B, Weir EK, Archer SL (2004) Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. J Mol Cell Cardiol 37:1119–36. doi:10.1016/j.yjmcc.2004.09.007

    PubMed  CAS  Google Scholar 

  65. Mojet MH, Mills E, Duchen MR (1997) Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J Physiol 504:175–189. doi:10.1111/j.1469-7793.1997.175bf.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Moudgil R, Michelakis ED, Archer SL (1985) Hypoxic pulmonary vasoconstriction. J Appl Physiol 98:390–403. doi:10.1152/japplphysiol.00733.2004

    Article  CAS  Google Scholar 

  67. Moudgil R, Michelakis ED, Archer SL (2006) The role of k + channels in determining pulmonary vascular tone, oxygen sensing, cell proliferation, and apoptosis: implications in hypoxic pulmonary vasoconstriction and pulmonary arterial hypertension. Microcirculation 13:615–32. doi:10.1080/10739680600930222

    Article  PubMed  CAS  Google Scholar 

  68. Nagendran J, Stewart K, Hoskinson M, Archer SL (2006) An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: implications for managing single-lung anesthesia and atelectasis. Curr Opin Anaesthesiol 19:34–43. doi:10.1097/01.aco.0000192777.09527.9e

    Article  PubMed  Google Scholar 

  69. Osipenko ON, Tate RJ, Gurney AM (2000) Potential role for kv3.1b channels as oxygen sensors. Circ Res 86:534–40

    Article  PubMed  CAS  Google Scholar 

  70. Paky A, Michael JR, Burke-Wolin TM, Wolin MS, Gurtner GH (1983) Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J Appl Physiol (1985) 74:2868–74

    Google Scholar 

  71. Park SW, Noh HJ, Sung DJ, Kim JG, Kim JM, Ryu SY, Kang K, Kim B, Bae YM, Cho H (2015) Hydrogen peroxide induces vasorelaxation by enhancing 4-aminopyridine-sensitive Kv currents through S-glutathionylation. Pflugers Arch 467:285–97. doi:10.1007/s00424-014-1513-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Peers C (1991) Effects of doxapram on ionic currents recorded in isolated type I cells of the neonatal rat carotid body. Brain Res 568:116–22

    Article  PubMed  CAS  Google Scholar 

  73. Platoshyn O, Yu Y, Ko EA, Remillard CV, Yuan JX (2007) Heterogeneity of hypoxia-mediated decrease in I(K(V)) and increase in [Ca2+](cyt) in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 293:L402–16. doi:10.1152/ajplung.00391.2006

    Article  PubMed  CAS  Google Scholar 

  74. Post JM, Hume JR, Archer SL, Weir EK (1992) Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol 262:C882–90

    PubMed  CAS  Google Scholar 

  75. Pozeg ZI, Michelakis ED, McMurtry MS, Thebaud B, Wu XC, Dyck JR, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer SL (2003) In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 107:2037–44. doi:10.1161/01.CIR.0000062688.76508.B3

    Article  PubMed  CAS  Google Scholar 

  76. Reeve HL, Michelakis E, Nelson DP, Weir EK, Archer SL (2001) Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol (1985) 90:2249–56

    CAS  Google Scholar 

  77. Reeve HL, Tolarova S, Nelson DP, Archer S, Weir EK (2001) Redox control of oxygen sensing in the rabbit ductus arteriosus. J Physiol 533:253–61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Reeve HL, Weir EK, Nelson DP, Peterson DA, Archer SL (1995) Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue. Exp Physiol 80:825–34

    Article  PubMed  CAS  Google Scholar 

  79. Robertson TP, Hague D, Aaronson PI, Ward JP (2000) Voltage-independent calcium entry in hypoxic pulmonary vasoconstriction of intrapulmonary arteries of the rat. J Physiol 525(Pt 3):669–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Rounds S, McMurtry IF (1981) Inhibitors of oxidative ATP production cause transient vasoconstriction and block subsequent pressor responses in rat lungs. Circ Res 48:393–400

    Article  PubMed  CAS  Google Scholar 

  81. Roy ML, Saal D, Perney T, Sontheimer H, Waxman SG, Kaczmarek LK (1996) Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 18:177–84. doi:10.1002/(SICI)1098-1136(199611)18:3<177::AID-GLIA2>3.0.CO;2-X

    Article  PubMed  CAS  Google Scholar 

  82. Shirai M, Ninomiya I, Sada K (1991) Constrictor response of small pulmonary arteries to acute pulmonary hypertension during left atrial pressure elevation. Jpn J Physiol 41:129–42

    Article  PubMed  CAS  Google Scholar 

  83. Skinner J (2001) Diagnosis of patent ductus arteriosus. Semin Neonatol 6:49–61. doi:10.1053/siny.2000.0037

    Article  PubMed  CAS  Google Scholar 

  84. Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103. doi:10.1111/j.1749-6632.2010.05627.x

    Article  PubMed  CAS  Google Scholar 

  85. Thebaud B, Michelakis ED, Wu XC, Moudgil R, Kuzyk M, Dyck JR, Harry G, Hashimoto K, Haromy A, Rebeyka I, Archer SL (2004) Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation 110:1372–9. doi:10.1161/01.CIR.0000141292.28616.65

    Article  PubMed  CAS  Google Scholar 

  86. Tolins M, Weir EK, Chesler E, Nelson DP, From AH (1986) Pulmonary vascular tone is increased by a voltage-dependent calcium channel potentiator. J Appl Physiol (1985) 60:942–8

    CAS  Google Scholar 

  87. Tristani-Firouzi M, Reeve HL, Tolarova S, Weir EK, Archer SL (1996) Oxygen-induced constriction of rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-, voltage-sensitive potassium channel. J Clin Invest 98:1959–65. doi:10.1172/JCI118999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Ward JP (2006) Point: hypoxic pulmonary vasoconstriction is mediated by increased production of reactive oxygen species. J Appl Physiol (1985) 101:993–5. doi:10.1152/japplphysiol.00480.2006, discussion 999

    Article  CAS  Google Scholar 

  89. Waypa GB, Chandel NS, Schumacker PT (2001) Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 88:1259–66

    Article  PubMed  CAS  Google Scholar 

  90. Waypa GB, Marks JD, Guzy RD, Mungai PT, Schriewer JM, Dokic D, Ball MK, Schumacker PT (2013) Superoxide generated at mitochondrial complex III triggers acute responses to hypoxia in the pulmonary circulation. Am J Respir Crit Care Med 187:424–32. doi:10.1164/rccm.201207-1294OC

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526–35. doi:10.1161/CIRCRESAHA.109.206334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Waypa GB, Marks JD, Mack MM, Boriboun C, Mungai PT, Schumacker PT (2002) Mitochondrial reactive oxygen species trigger calcium increases during hypoxia in pulmonary arterial myocytes. Circ Res 91:719–26

    Article  PubMed  CAS  Google Scholar 

  93. Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9:183–9

    PubMed  CAS  Google Scholar 

  94. Weir EK, Archer SL (2006) Counterpoint: hypoxic pulmonary vasoconstriction is not mediated by increased production of reactive oxygen species. J Appl Physiol (1985) 101:995–8. doi:10.1152/japplphysiol.00480a.2006, discussion 998

    Article  CAS  Google Scholar 

  95. Weir EK, Archer SL (2010) The role of redox changes in oxygen sensing. Respir Physiol Neurobiol 174:182–91. doi:10.1016/j.resp.2010.08.015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. N Engl J Med 353:2042–55. doi:10.1056/NEJMra050002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Weir EK, Reeve HL, Peterson DA, Michelakis ED, Nelson DP, Archer SL (1998) Pulmonary vasoconstriction, oxygen sensing, and the role of ion channels: Thomas A. Neff lecture. Chest 114:17S–22S

    Article  PubMed  CAS  Google Scholar 

  98. Wolin MS, Burke TM (1987) Hydrogen peroxide elicits activation of bovine pulmonary arterial soluble guanylate cyclase by a mechanism associated with its metabolism by catalase. Biochem Biophys Res Commun 143:20–5

    Article  PubMed  CAS  Google Scholar 

  99. Youngson C, Nurse C, Yeger H, Cutz E (1993) Oxygen sensing in airway chemoreceptors. Nature 365:153–5. doi:10.1038/365153a0

    Article  PubMed  CAS  Google Scholar 

  100. Yu SP, Yeh CH, Sensi SL, Gwag BJ, Canzoniero LM, Farhangrazi ZS, Ying HS, Tian M, Dugan LL, Choi DW (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–7

    Article  PubMed  CAS  Google Scholar 

  101. Yuan XJ, Tod ML, Rubin LJ, Blaustein MP (1990) Contrasting effects of hypoxia on tension in rat pulmonary and mesenteric arteries. Am J Physiol 259:H281–9

    PubMed  CAS  Google Scholar 

  102. Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ (1998) Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 351:726–7. doi:10.1016/S0140-6736(05)78495-6

    Article  PubMed  CAS  Google Scholar 

Download references

Funding sources

This work is supported by the National Institutes of Health RO1-HL071115 and 1RC1HL099462, Canadian Institutes for Health Research Foundation Award 333058, the Canada Foundation for Innovation (CFI) 33518 and 229252, the William J Henderson Foundation, and a Canada Research Chair 229252 (SLA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Archer.

Additional information

This article is published as part of the Special Issue on Ion Channels and Sensors in Oxygen Adaptation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunham-Snary, K.J., Hong, Z.G., Xiong, P.Y. et al. A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus. Pflugers Arch - Eur J Physiol 468, 43–58 (2016). https://doi.org/10.1007/s00424-015-1736-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-015-1736-y

Keywords

Navigation