Skip to main content

Advertisement

Log in

Renal acid-base regulation: new insights from animal models

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Because majority of biological processes are dependent on pH, maintaining systemic acid-base balance is critical. The kidney contributes to systemic acid-base regulation, by reabsorbing HCO3 (both filtered by glomeruli and generated within a nephron) and acidifying urine. Abnormalities in those processes will eventually lead to a disruption in systemic acid-base balance and provoke metabolic acid-base disorders. Research over the past 30 years advanced our understanding on cellular and molecular mechanisms responsible for those processes. In particular, a variety of transgenic animal models, where target genes are deleted either globally or conditionally, provided significant insights into how specific transporters are contributing to the renal acid-base regulation. Here, we broadly overview the mechanisms of renal ion transport participating to acid-base regulation, with emphasis on data obtained from transgenic mice models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The actual acid form of this buffer system is not CO2 but rather is carbonic acid H2CO3. However, H2CO3 is rapidly converted into CO2 by carbonic anhydrase and, for the sake of simplicity, we will consider in this review that the acid form is CO2.

References

  1. Ait-Mohamed AK, Marsy S, Barlet C, Khadouri C, Doucet A (1986) Characterization of N-ethylmaleimide-sensitive proton pump in the rat kidney. Localization along the nephron. J Biol Chem 261(27):12526–12533

    CAS  PubMed  Google Scholar 

  2. Al-Awqati Q (2008) 2007 Homer W. Smith Award: control of terminal differentiation in epithelia. J Am Soc Nephrol 19(3):443–449. doi:10.1681/asn.2007111195

    CAS  PubMed  Google Scholar 

  3. Al-Awqati Q, Gao XB (2011) Differentiation of intercalated cells in the kidney. Physiology 26(4):266–272. doi:10.1152/physiol.00008.2011

    CAS  PubMed  Google Scholar 

  4. Almomani E, Kaur S, Alexander RT, Cordat E (2014) Intercalated cells: more than pH regulation. Dis 2(2):71–92

    CAS  Google Scholar 

  5. Alper SL, Stuart-Tilley AK, Biemesderfer D, Shmukler BE, Brown D (1997) Immunolocalization of AE2 anion exchanger in rat kidney. Am J Physiol 273(4 Pt 2):F601–614

    CAS  PubMed  Google Scholar 

  6. Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol 271(4):F917–F925

    CAS  PubMed  Google Scholar 

  7. Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW (1995) Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int 48(4):1206–1215

    CAS  PubMed  Google Scholar 

  8. Arroyo JP, Gamba G (2012) Advances in WNK signaling of salt and potassium metabolism: clinical implications. Am J Nephrol 35(4):379–386. doi:10.1159/000337479

    CAS  PubMed  Google Scholar 

  9. Attmane-Elakeb A, Mount DB, Sibella V, Vernimmen C, Hebert SC, Bichara M (1998) Stimulation by in vivo and in vitro metabolic acidosis of expression of rBSC-1, the Na+-K+(NH4 +)-2Cl cotransporter of the rat medullary thick ascending limb. J Biol Chem 273(50):33681–33691. doi:10.1074/jbc.273.50.33681

    CAS  PubMed  Google Scholar 

  10. Bagnis C, Marshansky V, Breton S, Brown D (2001) Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol 280(3):F437–F448

    CAS  Google Scholar 

  11. Bailey MA, Giebisch G, Abbiati T, Aronson PS, Gawenis LR, Shull GE, Wang T (2004) NHE2-mediated bicarbonate reabsorption in the distal tubule of NHE3 null mice. J Physiol 561(3):765–775. doi:10.1113/jphysiol.2004.074716

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bastani B, Purcell H, Hemken P, Trigg D, Gluck S (1991) Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 88(1):126–136. doi:10.1172/jci115268

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Baum M, Twombley K, Gattineni J, Joseph C, Wang L, Zhang Q, Dwarakanath V, Moe OW (2012) Proximal tubule Na+/H+ exchanger activity in adult NHE8−/−, NHE3−/−, and NHE3−/−/NHE8−/− mice. Am J Physiol 303(11):F1495–F1502

    CAS  Google Scholar 

  14. Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, Aronson PS (1993) NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol 265(5 Pt 2):F736–742

    CAS  PubMed  Google Scholar 

  15. Bishop JM, Verlander JW, Lee H-W, Nelson RD, Weiner AJ, Handlogten ME, Weiner ID (2010) Role of the Rhesus glycoprotein, Rh B glycoprotein, in renal ammonia excretion. Am J Physiol 299(5):F1065–F1077

    CAS  Google Scholar 

  16. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA, Devuyst O, Marini AM (2008) A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456(7220):339–343, http://www.nature.com/nature/journal/v456/n7220/suppinfo/nature07518_S1.html

    CAS  PubMed  Google Scholar 

  17. Blanchard A, Eladari D, Leviel F, Tsimaratos M, Paillard M, Podevin R-A (1998) NH4 + as a substrate for apical and basolateral Na+-H+ exchangers of thick ascending limbs of rat kidney: evidence from isolated membranes. J Physiol 506(3):689–698. doi:10.1111/j.1469-7793.1998.689bv.x

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AEG, Bergstr, xF, m G, ran, Enerb, xE, ck S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113 (11):1560-1570. doi:10.1172/jci20665

  19. Boron WF (2010) Sharpey-schafer lecture: gas channels. Exp Physiol 95(12):1107–1130. doi:10.1113/expphysiol.2010.055244

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO3 transport. J Gen Physiol 81(1):53–94. doi:10.1085/jgp.81.1.53

    CAS  PubMed  Google Scholar 

  21. Bourgeois S, Bounoure L, Christensen EI, Ramakrishnan SK, Houillier P, Devuyst O, Wagner CA (2013) Haploinsufficiency of the ammonia transporter Rhcg predisposes to chronic acidosis: Rhcg is critical for apical and basolateral ammonia transport in the mouse collecting duct. J Biol Chem 288(8):5518–5529. doi:10.1074/jbc.M112.441782

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Bourgeois S, Meer LV, Wootla B, Bloch-Faure M, Chambrey R, Shull GE, Gawenis LR, Houillier P (2010) NHE4 is critical for the renal handling of ammonia in rodents. J Clin Invest 120(6):1895–1904

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Breton S, Alper SL, Gluck SL, Sly WS, Barker JE, Brown D (1995) Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice. Am J Physiol 269(6):F761–F774

    CAS  PubMed  Google Scholar 

  24. Brosius FC 3rd, Alper SL, Garcia AM, Lodish HF (1989) The major kidney band 3 gene transcript predicts an amino-terminal truncated band 3 polypeptide. J Biol Chem 264(14):7784–7787

    CAS  PubMed  Google Scholar 

  25. Brown D, Hirsch S, Gluck S (1988) Localization of a proton-pumping ATPase in rat kidney. J Clin Invest 82(6):2114–2126. doi:10.1172/jci113833

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Brown D, Hirscht S, Gluck S (1988) An H+-ATPase in opposite plasma membrane domains in kidney epithelial cell subpopulations. Nature 331(6157):622–624

    CAS  PubMed  Google Scholar 

  27. Brown D, Kumpulainen T, Roth J, Orci L (1983) Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney. Am J Physiol 245(1):F110–118

    CAS  PubMed  Google Scholar 

  28. Brown D, Wagner CA (2012) Molecular mechanisms of acid-base sensing by the kidney. J Am Soc Nephrol 23(5):774–780. doi:10.1681/asn.2012010029

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ (1997) Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100(7):1693–1707. doi:10.1172/jci119694

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Chambrey R, Goossens D, Bourgeois S, Picard N, Bloch-Faure M, Leviel F, Geoffroy V, Cambillau M, Colin Y, Paillard M, Houillier P, Cartron JP, Eladari D (2005) Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion. Am J Physiol 289(6):F1281–F1290. doi:10.1152/ajprenal.00172.2005

    CAS  Google Scholar 

  31. Chambrey R, Kurth I, Peti-Peterdi J, Houillier P, Purkerson JM, Leviel F, Hentschke M, Zdebik AA, Schwartz GJ, Hübner CA, Eladari D (2013) Renal intercalated cells are rather energized by a proton than a sodium pump. Proc Natl Acad Sci U S A 110(19):7928–7933. doi:10.1073/pnas.1221496110

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Chambrey R, Paillard M, Podevin RA (1994) Enzymatic and functional evidence for adaptation of the vacuolar H(+)-ATPase in proximal tubule apical membranes from rats with chronic metabolic acidosis. J Biol Chem 269(5):3243–3250

    CAS  PubMed  Google Scholar 

  33. Chambrey R, St John PL, Eladari D, Quentin F, Warnock DG, Abrahamson DR, Podevin R-A, Paillard M (2001) Localization and functional characterization of Na+/H+ exchanger isoform NHE4 in rat thick ascending limbs. Am J Physiol 281(4):F707–F717

    CAS  Google Scholar 

  34. Chambrey R, Warnock DG, Podevin R-A, Bruneval P, Mandet C, Bélair M-F, Bariéty J, Paillard M (1998) Immunolocalization of the Na+/H+exchanger isoform NHE2 in rat kidney. Am J Physiol 275(3):F379–F386

    CAS  PubMed  Google Scholar 

  35. Chan YL, Giebisch G (1981) Relationship between sodium and bicarbonate transport in the rat proximal convoluted tubule. Am J Physiol 240(3):F222–230

    CAS  PubMed  Google Scholar 

  36. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12(3):248–253

    CAS  PubMed  Google Scholar 

  37. Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR, Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479):625–628. doi:10.1126/science.289.5479.625

    CAS  PubMed  Google Scholar 

  38. Choi JY, Shah M, Lee MG, Schultheis PJ, Shull GE, Muallem S, Baum M (2000) Novel amiloride-sensitive sodium-dependent proton secretion in the mouse proximal convoluted tubule. J Clin Invest 105(8):1141–1146. doi:10.1172/jci9260

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Chou S-Y, Porush JG, Slater PA, Flombaum CD, Shafi T, Fein PA (1977) Effects of acetazolamide on proximal tubule Cl, Na, and HCO3 transport in normal and acidotic dogs during distal blockade. J Clin Invest 60(1):162–170. doi:10.1172/jci108752

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Chowdhury JA, Liu C-H, Zuber AM, O’Shaughnessy KM (2013) An inducible transgenic mouse model for familial hypertension with hyperkalemia (Gordon’s syndrome or pseudohypoaldosteronism type II). Clin Sci 124(12):701–708. doi:10.1042/cs20120430

    CAS  PubMed  Google Scholar 

  41. Cogan MG, Maddox DA, Warnock DG, Lin ET, Rector FC Jr (1979) Effect of acetazolamide on bicarbonate reabsorption in the proximal tubule of the rat. Am J Physiol 237(6):F447–454

    CAS  PubMed  Google Scholar 

  42. Curthoys NP, Lowry OH (1973) The distribution of glutaminase isoenzymes in the various structures of the nephron in normal, acidotic, and alkalotic rat kidney. J Biol Chem 248(1):162–168

    CAS  PubMed  Google Scholar 

  43. Edwards JC, van Adelsberg J, Rater M, Herzlinger D, Lebowitz J, Al-Awqati Q (1992) Conditional immortalization of bicarbonate-secreting intercalated cells from rabbit. Am J Physiol 263(2 Pt 1):C521–552

    CAS  PubMed  Google Scholar 

  44. Eladari D, Blanchard A, Leviel F, Paillard M, Stuart-Tilley AK, Alper SL, Podevin RA (1998) Functional and molecular characterization of luminal and basolateral Cl/HCO3 exchangers of rat thick limbs. Am J Physiol 275(3 Pt 2):F334–342

    CAS  PubMed  Google Scholar 

  45. Eladari D, Chambrey R, Peti-Peterdi J (2012) A new look at electrolyte transport in the distal tubule. Ann Rev Physiol 74(1):325–349. doi:10.1146/annurev-physiol-020911-153225

    CAS  Google Scholar 

  46. Eladari D, Chambrey R, Picard N, Hadchouel J (2014) Electroneutral absorption of NaCl by the aldosterone-sensitive distal nephron: implication for normal electrolytes homeostasis and blood pressure regulation. Cell Mol Life Sci:1-17. doi:10.1007/s00018-014-1585-4

  47. Eladari D, Cheval L, Quentin F, Bertrand O, Mouro I, Cherif-Zahar B, Cartron J-P, Paillard M, Doucet A, Rg C (2002) Expression of RhCG, a new putative NH3/NH4 + transporter, along the rat nephron. J Am Soc Nephrol 13(8):1999–2008. doi:10.1097/01.asn.0000025280.02386.9d

    CAS  PubMed  Google Scholar 

  48. Endeward V, Al-Samir S, Itel F, Gros G (2014) How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods. Frontiers in Physiology 4. doi:10.3389/fphys.2013.00382

  49. Esaki M, Hoshijima K, Nakamura N, Munakata K, Tanaka M, Ookata K, Asakawa K, Kawakami K, Wang W, Weinberg ES, Hirose S (2009) Mechanism of development of ionocytes rich in vacuolar-type H+-ATPase in the skin of zebrafish larvae. Dev Biol 329(1):116–129

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Esposito G, Jaiswal BS, Xie F, Krajnc-Franken MAM, Robben TJAA, Strik AM, Kuil C, Philipsen RLA, van Duin M, Conti M, Gossen JA (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci U S A 101(9):2993–2998. doi:10.1073/pnas.0400050101

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Fang X, Yang B, Matthay MA, Verkman AS (2002) Evidence against aquaporin-1-dependent CO2 permeability in lung and kidney. J Physiol 542(1):63–69. doi:10.1113/jphysiol.2001.013813

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP (2005) The B1-subunit of the H+ ATPase is required for maximal urinary acidification. Proc Natl Acad Sci U S A 102(38):13616–13621. doi:10.1073/pnas.0506769102

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Fuster D, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch - Eur J Physiol 466(1):61–76. doi:10.1007/s00424-013-1408-8

    CAS  Google Scholar 

  54. Gao X, Eladari D, Leviel F, Tew BY, Miro-Julia C, Cheema F, Miller L, Nelson R, Paunescu TG, McKee M, Brown D, Al-Awqati Q (2010) Deletion of hensin/DMBT1 blocks conversion of b- to a-intercalated cells and induces distal renal tubular acidosis. Proc Natl Acad Sci U S A 107(50):21872–21877. doi:10.1073/pnas.1010364107

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gawenis LR, Bradford EM, Prasad V, Lorenz JN, Simpson JE, Clarke LL, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2007) Colonic anion secretory defects and metabolic acidosis in mice lacking the NBC1 co-transporter. J Biol Chem 282(12):9042–9052. doi:10.1074/jbc.M607041200

    CAS  PubMed  Google Scholar 

  56. Gawenis LR, Ledoussal C, Judd LM, Prasad V, Alper SL, Stuart-Tilley A, Woo AL, Grisham C, Sanford LP, Doetschman T, Miller ML, Shull GE (2004) Mice with a targeted disruption of the AE2 exchanger are achlorhydric. J Biol Chem 279(29):30531–30539. doi:10.1074/jbc.M403779200

    CAS  PubMed  Google Scholar 

  57. Geller DS, Rodriguez-Soriano J, Boado AV, Schifter S, Bayer M, Chang SS, Lifton RP (1998) Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19(3):279–281

    CAS  PubMed  Google Scholar 

  58. Geyer RR, Musa-Aziz R, Enkavi G, Mahinthichaichan P, Tajkhorshid E, Boron WF (2013) Movement of NH3 through the human urea transporter B (UT-B): a new gas channel. Am J Physiol 304(12):F1447–1457. doi:10.1152/ajprenal.00609.2012

    CAS  Google Scholar 

  59. Geyer RR, Musa-Aziz R, Qin X, Boron WF (2013) Relative CO2/NH3 selectivities of mammalian aquaporins 0-9. Am J Physiol 304(10):C985–994. doi:10.1152/ajpcell.00033.2013

    Google Scholar 

  60. Geyer RR, Parker M, Toye A, Boron W, Musa-Aziz R (2013) Relative CO2/NH3 permeabilities of human RhAG, RhBG and RhCG. J Membr Biol 246(12):915–926. doi:10.1007/s00232-013-9593-0

    CAS  PubMed  Google Scholar 

  61. Glover M, O’Shaughnessy KM (2013) Molecular insights from dysregulation of the thiazide-sensitive WNK/SPAK/NCC pathway in the kidney: Gordon syndrome and Thiazide-Induced Hyponatraemia. Clin Exp Pharmacol Physiol. doi:10.1111/1440-1681.12115

    PubMed  Google Scholar 

  62. Good DW (1985) Sodium-dependent bicarbonate absorption by cortical thick ascending limb of rat kidney. Am J Physiol 248(6 Pt 2):F821–829

    CAS  PubMed  Google Scholar 

  63. Good DW (1987) Effects of potassium on ammonia transport by medullary thick ascending limb of the rat. J Clin Invest 80(5):1358–1365. doi:10.1172/jci113213

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Good DW (1988) Active absorption of NH4 + by rat medullary thick ascending limb: inhibition by potassium. Am J Physiol 255(1 Pt 2):F78–87

    CAS  PubMed  Google Scholar 

  65. Good DW (1990) Adaptation of HCO3 and NH4 + transport in rat MTAL: effects of chronic metabolic acidosis and Na+ intake. Am J Physiol 258(5 Pt 2):F1345–1353

    CAS  PubMed  Google Scholar 

  66. Good DW (1994) Ammonium transport by the thick ascending limb of Henle’s loop. Ann Rev Physiol 56(1):623–647. doi:10.1146/annurev.ph.56.030194.003203

    CAS  Google Scholar 

  67. Good DW, Burg MB (1984) Ammonia production by individual segments of the rat nephron. J Clin Invest 73(3):602–610. doi:10.1172/jci111250

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Good DW, Knepper MA, Burg MB (1984) Ammonia and bicarbonate transport by thick ascending limb of rat kidney. Am J Physiol 247(1 Pt 2):F35–44

    CAS  PubMed  Google Scholar 

  69. Good DW, Watts BA (1996) Functional roles of apical membrane Na+/H+ exchange in rat medullary thick ascending limb. Am J Physiol 270(4):F691–F699

    CAS  PubMed  Google Scholar 

  70. Good DW, Watts BA, George T, Meyer JW, Shull GE (2004) Transepithelial HCO3 absorption is defective in renal thick ascending limbs from Na+/H+ exchanger NHE1 null mutant mice. Am J Physiol 287(6):F1244–F1249

    CAS  Google Scholar 

  71. Goyal S, Mentone S, Aronson PS (2005) Immunolocalization of NHE8 in rat kidney. Am J Physiol 288(3):F530–F538

    CAS  Google Scholar 

  72. Goyal S, Vanden GH, Aronson PS (2003) Renal expression of novel Na+/H+ exchanger isoform NHE8. Am J Physiol 284(3):F467–F473

    CAS  Google Scholar 

  73. Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Corniere N, Leviel F, Sohet F, Wagner CA, Eladari D, Chambrey R (2013) Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 123(10):4219–4231. doi:10.1172/jci63492

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Guo Q, Wang Y, Tripathi P, Manda KR, Mukherjee M, Chaklader M, Austin PF, Surendran K, Chen F (2014) Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J Am Soc Nephrol. doi:10.1681/asn.2013070764

    Google Scholar 

  75. Haque SK, Ariceta G, Batlle D (2012) Proximal renal tubular acidosis: a not so rare disorder of multiple etiologies. Nephrol Dial Transplant 27(12):4273–4287. doi:10.1093/ndt/gfs493

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Hennings JC, Picard N, Huebner AK, Stauber T, Maier H, Brown D, Jentsch TJ, Vargas-Poussou R, Eladari D, Hübner CA (2012) A mouse model for distal renal tubular acidosis reveals a previously unrecognized role of the V-ATPase a4 subunit in the proximal tubule. EMBO Mol Med 4(10):1057–1071

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Hikita C, Takito J, Vijayakumar S, Al-Awqati Q (1999) Only multimeric hensin located in the extracellular matrix can induce apical endocytosis and reverse the polarity of intercalated cells. J Biol Chem 274(25):17671–17676. doi:10.1074/jbc.274.25.17671

    CAS  PubMed  Google Scholar 

  78. Hikita C, Vijayakumar S, Takito J, Erdjument-Bromage H, Tempst P, Al-Awqati Q (2000) Induction of terminal differentiation in epithelial cells requires polymerization of hensin by galectin 3. J Cell Biol 151(6):1235–1246. doi:10.1083/jcb.151.6.1235

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Hoorn EJ, Ellison DH (2012) WNK kinases and the kidney. Exp Cell Res 318(9):1020–1026

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Hoorn EJ, Nelson JH, McCormick JA, Ellison DH (2011) The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 22(4):605–614. doi:10.1681/asn.2010080827

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Hsiao C-D, You M-S, Guh Y-J, Ma M, Jiang Y-J, Hwang P-P (2007) A positive regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of zebrafish epidermal ionocytes. PLoS ONE 2(3):e302

    PubMed Central  PubMed  Google Scholar 

  82. Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson E-J, Johansson BR, Steel KP, Enerbäck S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130(9):2013–2025. doi:10.1242/dev.00376

    CAS  PubMed  Google Scholar 

  83. Hummler E, Barker P, Talbot C, Wang Q, Verdumo C, Grubb B, Gatzy J, Burnier M, Horisberger J-D, Beermann F, Boucher R, Rossier BC (1997) A mouse model for the renal salt-wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 94(21):11710–11715

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Igarashi T, Inatomi J, Sekine T, Cha SH, Kanai Y, Kunimi M, Tsukamoto K, Satoh H, Shimadzu M, Tozawa F, Mori T, Shiobara M, Seki G, Endou H (1999) Mutations in SLC4A4 cause permanent isolated proximal renal tubular acidosis with ocular abnormalities. Nat Genet 23(3):264–266. doi:10.1038/15440

    CAS  PubMed  Google Scholar 

  85. Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Büsst CJ, Jayat M, Cornière N, Hassan H, Aronson PS, Hennings JC, Hübner CA, Nelson RD, Chambrey R, Eladari D (2013) Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 24(7):1104–1113. doi:10.1681/asn.2012080787

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Jänicke M, Carney TJ, Hammerschmidt M (2007) Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Dev Biol 307(2):258–271

    PubMed  Google Scholar 

  87. Jeong HW, Jeon US, Koo BK, Kim WY, Im SK, Shin J, Cho Y, Kim J, Kong YY (2009) Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 119(11):3290–3300. doi:10.1172/jci38416

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Karet FE (2009) Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol 20(2):251–254. doi:10.1681/asn.2008020166

    CAS  PubMed  Google Scholar 

  89. Karet FE, Finberg KE, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Medina JF, Lifton RP (1999) Localization of a gene for autosomal recessive distal renal tubular acidosis with normal hearing (rdRTA2) to 7q33-34. Am J Hum Genet 65(6):1656–1665. doi:10.1086/302679

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez-Soriano J, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21(1):84–90. doi:10.1038/5022

    CAS  PubMed  Google Scholar 

  91. Kikeri D, Sun A, Zeidel ML, Hebert SC (1989) Cell membranes impermeable to NH3. Nature 339(6224):478–480

    CAS  PubMed  Google Scholar 

  92. Kikeri DASSAZMLHSC (1990) Na+-H+ antiporter and Na+-(HCO3 ) n symporter regulate intracellular pH in mouse medullary thick limbs of Henle. Am J Physiol 258(3):F445–F456

    CAS  PubMed  Google Scholar 

  93. Kim H-Y, Verlander JW, Bishop JM, Cain BD, Han K-H, Igarashi P, Lee H-W, Handlogten ME, Weiner ID (2009) Basolateral expression of the ammonia transporter family member Rh C glycoprotein in the mouse kidney. Am J Physiol 296(3):F543–F555

    CAS  Google Scholar 

  94. Kinne R, Kinne-Saffran E, Schütz H, Schölermann B (1986) Ammonium transport in medullary thick ascending limb of rabbit kidney: involvement of the Na+, K+, Cl−-cotransporter. J Membr Biol 94(3):279–284. doi:10.1007/bf01869723

    CAS  PubMed  Google Scholar 

  95. Kinsella JL, Aronson PS (1981) Interaction of NH4 + and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am J Physiol 241(5):C220–226

    CAS  PubMed  Google Scholar 

  96. Kollert-Jons A, Wagner S, Hubner S, Appelhans H, Drenckhahn D (1993) Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 265(6 Pt 2):F813–821

    CAS  PubMed  Google Scholar 

  97. Kurtz I, Zhu Q (2013) Proximal renal tubular acidosis mediated by mutations in NBCe1-A: unraveling the transporter’s structure-functional properties. Frontiers in Physiology 4. doi:10.3389/fphys.2013.00350

  98. Kwon T-H, Fulton C, Wang W, Kurtz I, Frøkiær J, Aalkjær C, Nielsen S (2002) Chronic metabolic acidosis upregulates rat kidney Na-HCO cotransporters NBCn1 and NBC3 but not NBC1. Am J Physiol 282(2):F341–F351

    Google Scholar 

  99. Laghmani K, Borensztein P, Ambuhl P, Froissart M, Bichara M, Moe OW, Alpern RJ, Paillard M (1997) Chronic metabolic acidosis enhances NHE-3 protein abundance and transport activity in the rat thick ascending limb by increasing NHE-3 mRNA. J Clin Invest 99(1):24–30. doi:10.1172/jci119128

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Lalioti MD, Zhang J, Volkman HM, Kahle KT, Hoffmann KE, Toka HR, Nelson-Williams C, Ellison DH, Flavell R, Booth CJ, Lu Y, Geller DS, Lifton RP (2006) Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat Genet 38(10):1124–1132. doi:10.1038/ng1877

    CAS  PubMed  Google Scholar 

  101. Leaf A, Schwartz WB, Relman AS (1954) Oral administration of a potent carbonic anhydrase inhibitor (diamox). I Changes in electrolyte and acid-base balance. New Eng J Med 250(18):759–764. doi:10.1056/nejm195405062501803

    CAS  PubMed  Google Scholar 

  102. Lee H-W, Verlander JW, Bishop JM, Igarashi P, Handlogten ME, Weiner ID (2009) Collecting duct-specific Rh C glycoprotein deletion alters basal and acidosis-stimulated renal ammonia excretion. Am J Physiol 296(6):F1364–F1375

    CAS  Google Scholar 

  103. Lee H-W, Verlander JW, Bishop JM, Nelson RD, Handlogten ME, Weiner ID (2010) Effect of intercalated cell-specific Rh C glycoprotein deletion on basal and metabolic acidosis-stimulated renal ammonia excretion. Am J Physiol 299(2):F369–F379. doi:10.1152/ajprenal.00120.2010

    CAS  Google Scholar 

  104. Lee H-W, Verlander JW, Handlogten ME, Han K-H, Weiner ID (2014) Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis. Am J Physiol 306(4):F389–400. doi:10.1152/ajprenal.00176.2013

    CAS  Google Scholar 

  105. Leviel F, Borensztein P, Houillier P, Paillard M, Bichara M (1992) Electroneutral K+/HCO3 cotransport in cells of medullary thick ascending limb of rat kidney. J Clin Invest 90(3):869–878. doi:10.1172/jci115962

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Leviel F, Eladari D, Blanchard A, Poumarat JS, Paillard M, Podevin RA (1999) Pathways for HCO3 exit across the basolateral membrane in rat thick limbs. Am J Physiol 276(6 Pt 2):F847–856

    CAS  PubMed  Google Scholar 

  107. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hatim H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D (2010) The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120(5):1627–1635

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci U S A 85(6):1962–1966

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Li H, Du Z, Barone S, Rubera I, McDonough A, Tauc M, Zahedi K, Wang T, Soleimani M (2013) Proximal tubule specific knockout of the Na+/H+ exchanger NHE3: effects on bicarbonate absorption and ammonium excretion. J Mol Med:1-13. doi:10.1007/s00109-013-1015-3

  110. Liu Z, Peng J, Mo R, Hui C, Huang CH (2001) Rh type B glycoprotein is a new member of the Rh superfamily and a putative ammonia transporter in mammals. J Biol Chem 276(2):1424–1433. doi:10.1074/jbc.M007528200

    CAS  PubMed  Google Scholar 

  111. Lo Y-F, Yang S-S, Seki G, Yamada H, Horita S, Yamazaki O, Fujita T, Usui T, Tsai J-D, Yu IS, Lin S-W, Lin S-H (2011) Severe metabolic acidosis causes early lethality in NBC1 W516X knock-in mice as a model of human isolated proximal renal tubular acidosis. Kidney Int 79(7):730–741

    CAS  PubMed  Google Scholar 

  112. Lorenz JN, Schultheis PJ, Traynor T, Shull GE, Schnermann J (1999) Micropuncture analysis of single-nephron function in NHE3-deficient mice. Am J Physiol 277(3):F447–F453

    CAS  PubMed  Google Scholar 

  113. Louis-Dit-Picard H, Barc J, Trujillano D, Miserey-Lenkei S, Bouatia-Naji N, Pylypenko O, Beaurain G, Bonnefond A, Sand O, Simian C, Vidal-Petiot E, Soukaseum C, Mandet C, Broux F, Chabre O, Delahousse M, Esnault V, Fiquet B, Houillier P, Bagnis CI, Koenig J, Konrad M, Landais P, Mourani C, Niaudet P, Probst V, Thauvin C, Unwin RJ, Soroka SD, Ehret G, Ossowski S, Caulfield M, Bruneval P, Estivill X, Froguel P, Hadchouel J, Schott J-J, Jeunemaitre X (2012) KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44(4):456–460, http://www.nature.com/ng/journal/v44/n4/abs/ng.2218.html#supplementary-information

    CAS  PubMed  Google Scholar 

  114. Lucci MS, Tinker JP, Weiner IM, DuBose TD Jr (1983) Function of proximal tubule carbonic anhydrase defined by selective inhibition. Am J Physiol 245(4):F443–449

    CAS  PubMed  Google Scholar 

  115. Mak D-OD, Dang B, Weiner ID, Foskett JK, Westhoff CM (2006) Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am J Physiol 290(2):F297–F305. doi:10.1152/ajprenal.00147.2005

    CAS  Google Scholar 

  116. Mohebbi N, Mihailova M, Wagner CA (2009) The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am J Physiol 297(2):F499–F509

    CAS  Google Scholar 

  117. Musa-Aziz R, Chen L-M, Pelletier MF, Boron WF (2009) Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG. Proc Natl Acad Sci U S A 106(13):5406–5411. doi:10.1073/pnas.0813231106

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Nagami GT (1988) Luminal secretion of ammonia in the mouse proximal tubule perfused in vitro. J Clin Invest 81(1):159–164. doi:10.1172/jci113287

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Nakamura S, Amlal H, Schultheis PJ, Galla JH, Shull GE, Soleimani M (1999) HCO3 reabsorption in renal collecting duct of NHE-3-deficient mouse: a compensatory response. Am J Physiol 276(6):F914–F921

    CAS  PubMed  Google Scholar 

  120. Odgaard E, Jakobsen JK, Frische S, Praetorius J, Nielsen S, Aalkjaer C, Leipziger J (2004) Basolateral Na+-dependent HCO3 transporter NBCn1-mediated HCO3 influx in rat medullary thick ascending limb. J Physiol 555(Pt 1):205–218. doi:10.1113/jphysiol.2003.046474

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Orlowski J (1993) Heterologous expression and functional properties of amiloride high affinity (NHE-1) and low affinity (NHE-3) isoforms of the rat Na/H exchanger. J Biol Chem 268(22):16369–16377

    CAS  PubMed  Google Scholar 

  122. Packer RK, Desai SS, Hornbuckle K, Knepper MA (1991) Role of countercurrent multiplication in renal ammonium handling: regulation of medullary ammonium accumulation. J Am Soc Nephrol 2(1):77–83

    CAS  PubMed  Google Scholar 

  123. Parker MD, Boron WF (2013) The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 93(2):803–959. doi:10.1152/physrev.00023.2012

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Păunescu TG, Da Silva N, Russo LM, McKee M, Lu HAJ, Breton S, Brown D (2008) Association of soluble adenylyl cyclase with the V-ATPase in renal epithelial cells. Am J Physiol 294(1):F130–F138. doi:10.1152/ajprenal.00406.2007

    Google Scholar 

  125. Pǎunescu TG, Ljubojevic M, Russo LM, Winter C, McLaughlin MM, Wagner CA, Breton S, Brown D (2010) cAMP stimulates apical V-ATPase accumulation, microvillar elongation, and proton extrusion in kidney collecting duct A-intercalated cells. Am J Physiol 298(3):F643–F654

    Google Scholar 

  126. Păunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D (2007) Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am J Physiol 293(6):F1915–F1926. doi:10.1152/ajprenal.00160.2007

    Google Scholar 

  127. Peng H, Vijayakumar S, Schiene-Fischer C, Li H, Purkerson JM, Malesevic M, Liebscher J, Al-Awqati Q, Schwartz GJ (2009) Secreted cyclophilin A, a peptidylprolyl cis-trans isomerase, mediates matrix assembly of hensin, a protein implicated in epithelial differentiation. J Biol Chem 284(10):6465–6475. doi:10.1074/jbc.M808964200

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Peters LL, Shivdasani RA, Liu S-C, Hanspal M, John KM, Gonzalez JM, Brugnara C, Gwynn B, Mohandas N, Alper SL, Orkin SH, Lux SE (1996) Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 86(6):917–927. doi:10.1016/s0092-8674(00)80167-1

    CAS  PubMed  Google Scholar 

  129. Purkerson JM, Kittelberger AM, Schwartz GJ (2007) Basolateral carbonic anhydrase IV in the proximal tubule is a glycosylphosphatidylinositol-anchored protein. Kidney Int 71(5):407–416

    CAS  PubMed  Google Scholar 

  130. Purkerson JM, Schwartz GJ (2006) The role of carbonic anhydrases in renal physiology. Kidney Int 71(2):103–115

    PubMed  Google Scholar 

  131. Quentin F, Eladari D, Cheval L, Lopez C, Goossens D, Colin Y, Cartron JP, Paillard M, Chambrey R (2003) RhBG and RhCG, the putative ammonia transporters, are expressed in the same cells in the distal nephron. J Am Soc Nephrol 14(3):545–554

    CAS  PubMed  Google Scholar 

  132. Quigley IK, Stubbs JL, Kintner C (2011) Specification of ion transport cells in the Xenopus larval skin. Development 138(4):705–714. doi:10.1242/dev.055699

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron JP (2004) Human Rhesus-associated glycoprotein mediates facilitated transport of NH3 into red blood cells. Proc Natl Acad Sci U S A 101(49):17222–17227. doi:10.1073/pnas.0403704101

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Romero MF, Hediger MA, Boulpaep EL, Boron WF (1997) Expression cloning and characterization of a renal electrogenic Na+/HCO3 cotransporter. Nature 387(6631):409–413

    CAS  PubMed  Google Scholar 

  135. Sabolic I, Haase W, Burckhardt G (1985) ATP-dependent H+ pump in membrane vesicles from rat kidney cortex. Am J Physiol 248(6):F835–F844

    CAS  PubMed  Google Scholar 

  136. Saroussi S, Nelson N (2009) The little we know on the structure and machinery of V-ATPase. J Exp Biol 212(11):1604–1610. doi:10.1242/jeb.025866

    CAS  PubMed  Google Scholar 

  137. Satlin LM, Schwartz GJ (1989) Cellular remodeling of HCO3–secreting cells in rabbit renal collecting duct in response to an acidic environment. J Cell Biol 109(3):1279–1288. doi:10.1083/jcb.109.3.1279

    CAS  PubMed  Google Scholar 

  138. Schultheis PJ, Clarke LL, Meneton P, Harline M, Boivin GP, Stemmermann G, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Targeted disruption of the murine Na+/H+ exchanger isoform 2 gene causes reduced viability of gastric parietal cells and loss of net acid secretion. J Clin Invest 101(6):1243–1253. doi:10.1172/jci1249

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, Riddle TM, Duffy JJ, Doetschman T, Wang T, Giebisch G, Aronson PS, Lorenz JN, Shull GE (1998) Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 19(3):282–285

    CAS  PubMed  Google Scholar 

  140. Schuster VL (1993) Function and regulation of collecting duct intercalated cells. Ann Rev Physiol 55(1):267–288. doi:10.1146/annurev.ph.55.030193.001411

    CAS  Google Scholar 

  141. Schwaderer AL, Vijayakumar S, Al-Awqati Q, Schwartz GJ (2006) Galectin-3 expression is induced in renal b-intercalated cells during metabolic acidosis. Am J Physiol 290(1):F148–F158. doi:10.1152/ajprenal.00244.2005

    CAS  Google Scholar 

  142. Schwartz GJ, Al-Awqati Q (1985) Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75(5):1638–1644. doi:10.1172/jci111871

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Schwartz GJ, Barasch J, Al-Awqati Q (1985) Plasticity of functional epithelial polarity. Nature 318(6044):368–371

    CAS  PubMed  Google Scholar 

  144. Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q (2002) Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J Clin Invest 109(1):89–99

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Seki G, Horita S, Suzuki M, Yamazaki O, Usui T, Nakamura M, Yamada H (2013) Molecular mechanisms of renal and extrarenal manifestations caused by inactivation of the electrogenic Na(+)-HCO3 (-) cotransporter NBCe1. Front Physiol 4:270. doi:10.3389/fphys.2013.00270

    PubMed Central  PubMed  Google Scholar 

  146. Seshadri RM, Klein JD, Kozlowski S, Sands JM, Kim Y-H, Han K-H, Handlogten ME, Verlander JW, Weiner ID (2006) Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol 290(2):F397–F408. doi:10.1152/ajprenal.00162.2005

    CAS  Google Scholar 

  147. Seshadri RM, Klein JD, Smith T, Sands JM, Handlogten ME, Verlander JW, Weiner ID (2006) Changes in subcellular distribution of the ammonia transporter, Rhcg, in response to chronic metabolic acidosis. Am J Physiol 290(6):F1443–F1452. doi:10.1152/ajprenal.00459.2005

    CAS  Google Scholar 

  148. Simon EE, Merli C, Herndon J, Cragoe EJ Jr, Hamm LL (1989) Determinants of ammonia entry along the rat proximal tubule during chronic metabolic acidosis. Am J Physiol 256(6 Pt 2):F1104–1110

    CAS  PubMed  Google Scholar 

  149. Simon EE, Merli C, Herndon J, Cragoe EJ Jr, Hamm LL (1992) Effects of barium and 5-(N-ethyl-N-isopropyl)-amiloride on proximal tubule ammonia transport. Am J Physiol 262(1 Pt 2):F36–39

    CAS  PubMed  Google Scholar 

  150. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci U S A 80(9):2752–2756

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26(1):71–75

    CAS  PubMed  Google Scholar 

  152. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA (2007) Distal renal tubular acidosis in mice lacking the AE1 (Band3) Cl/HCO3 exchanger (slc4a1). J Am Soc Nephrol 18(5):1408–1418. doi:10.1681/asn.2006101072

    CAS  PubMed  Google Scholar 

  153. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch ABS, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont M-J, Guala A, Hulton SA, Kroes H, Li Volti G, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez Soriano J, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39(11):796–803. doi:10.1136/jmg.39.11.796

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Strautnieks SS, Thompson RJ, Gardiner RM, Chung E (1996) A novel spice-site mutation in the [gamma] subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 13(2):248–250

    CAS  PubMed  Google Scholar 

  155. Sun AM (1998) Expression of Cl/HCO3 exchanger in the basolateral membrane of mouse medullary thick ascending limb. Am J Physiol 274(2):F358–F364

    CAS  PubMed  Google Scholar 

  156. Takito J, Hikita C, Al-Awqati Q (1996) Hensin, a new collecting duct protein involved in the in vitro plasticity of intercalated cell polarity. J Clin Invest 98(10):2324–2331

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Tresguerres M, Buck J, Levin L (2010) Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch 460(6):953–964. doi:10.1007/s00424-010-0865-6

    CAS  PubMed Central  PubMed  Google Scholar 

  158. Tresguerres M, Levin LR, Buck J (2011) Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney Int 79(12):1277–1288

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Twombley K, Gattineni J, Bobulescu IA, Dwarakanath V, Baum M (2010) Effect of metabolic acidosis on neonatal proximal tubule acidification. Am J Physiol 299(5):R1360–R1368

    CAS  Google Scholar 

  160. Uchida S (2014) Regulation of blood pressure and renal electrolyte balance by Cullin-RING ligases. Curr Opin Nephrol Hypertens 23(5):487–493. doi:10.1097/mnh.0000000000000049

    CAS  PubMed  Google Scholar 

  161. Adelsberg J, Edwards JC, Takito J, Kiss B, Al-Awqati Q (1994) An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells. Cell 76(6):1053–1061. doi:10.1016/0092-8674(94)90382-4

    PubMed  Google Scholar 

  162. Vedovelli L, Rothermel JT, Finberg KE, Wagner CA, Azroyan A, Hill E, Breton S, Brown D, Paunescu TG (2013) Altered V-ATPase expression in renal intercalated cells isolated from B1-subunit deficient mice by fluorescence activated cell sorting. Am J Physiol 304(5):522–532. doi:10.1152/ajprenal.00394.2012

    Google Scholar 

  163. Verlander JW, Miller RT, Frank AE, Royaux IE, Kim Y-H, Weiner ID (2003) Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol 284(2):F323–F337. doi:10.1152/ajprenal.00050.2002

    CAS  Google Scholar 

  164. Vidal-Petiot E, Elvira-Matelot E, Mutig K, Soukaseum C, Baudrie V, Wu S, Cheval L, Huc E, Cambillau M, Bachmann S, Doucet A, Jeunemaitre X, Hadchouel J (2013) WNK1-related familial hyperkalemic hypertension results from an increased expression of L-WNK1 specifically in the distal nephron. Proc Natl Acad Sci U S A 110(35):14366–14371. doi:10.1073/pnas.1304230110

    CAS  PubMed Central  PubMed  Google Scholar 

  165. Vidarsson H, Westergren R, Heglind M, Blomqvist SR, Breton S, Enerbäck S (2009) The forkhead transcription factor Foxi1 is a master regulator of vacuolar H+-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLoS ONE 4(2):e4471. doi:10.1371/journal.pone.0004471

    PubMed Central  PubMed  Google Scholar 

  166. Vijayakumar S, Erdjument-Bromage H, Tempst P, Al-Awqati Q (2008) Role of integrins in the assembly and function of hensin in intercalated cells. J Am Soc Nephrol 19(6):1079–1091. doi:10.1681/asn.2007070737

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Vorum H, Kwon T-H, Fulton C, Simonsen B, Choi I, Boron W, Maunsbach AB, Nielsen S, Aalkjær C (2000) Immunolocalization of electroneutral Na-HCO3 cotransporter in rat kidney. Am J Physiol 279(5):F901–F909

    CAS  Google Scholar 

  168. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84(4):1263–1314

    CAS  PubMed  Google Scholar 

  169. Wang T, Yang C-L, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, Aronson PS (1999) Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol 277(2):F298–F302

    CAS  PubMed  Google Scholar 

  170. Watanabe S, Tsuruoka S, Vijayakumar S, Fischer G, Zhang Y, Fujimura A, Al-Awqati Q, Schwartz GJ (2004) Cyclosporin A produces distal renal tubular acidosis by blocking peptidyl prolyl cis-trans isomerase activity of cyclophilin. Am J Physiol 288(1):F40–F47

    Google Scholar 

  171. Watts BA 3rd, Good DW (1994) Effects of ammonium on intracellular pH in rat medullary thick ascending limb: mechanisms of apical membrane NH4 + transport. J Gen Physiol 103(5):917–936

    CAS  PubMed  Google Scholar 

  172. Watts BA, George T, Good DW (2005) The basolateral NHE1 Na+/H+ exchanger regulates transepithelial absorption through actin cytoskeleton remodeling in renal thick ascending limb. J Biol Chem 280(12):11439–11447. doi:10.1074/jbc.M410719200

    CAS  PubMed  Google Scholar 

  173. Weiner ID, Verlander JW (2011) Role of NH3 and NH4 + transporters in renal acid-base transport. Am J Physiol 300(1):F11–F23

    CAS  Google Scholar 

  174. Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard J-M, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293(5532):1107–1112. doi:10.1126/science.1062844

    CAS  PubMed  Google Scholar 

  175. Wright PA, Knepper MA (1990) Phosphate-dependent glutaminase activity in rat renal cortical and medullary tubule segments. Am J Physiol 259(6 Pt 2):F961–970

    CAS  PubMed  Google Scholar 

  176. Wu M-S, Biemesderfer D, Giebisch G, Aronson PS (1996) Role of NHE3 in mediating renal brush border Na+-H+ exchange: adaptations to metabolic acidosis. J Biol Chem 271(51):32749–32752. doi:10.1074/jbc.271.51.32749

    CAS  PubMed  Google Scholar 

  177. Yang S-S, Morimoto T, Rai T, Chiga M, Sohara E, Ohno M, Uchida K, Lin S-H, Moriguchi T, Shibuya H, Kondo Y, Sasaki S, Uchida S (2007) Molecular pathogenesis of Pseudohypoaldosteronism Type II: generation and analysis of a Wnk4 D561A/+ knockin mouse mode. Cell Metab 5(5):331–344. doi:10.1016/j.cmet.2007.03.009

    CAS  PubMed  Google Scholar 

  178. Zidi-Yahiaoui N, Mouro-Chanteloup I, D’Ambrosio A-M, Lopez C, Gane P, Le van Kim C, Cartron J-P, Colin Y, Ripoche P (2005) Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells. Biochem J 391(1):33–40. doi:10.1042/bj20050657

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

D Eladari and coworkers are funded by the Institut National de la Santé et de la Recherche Médicale (INSERM). This work was also funded by grants from l’Agence Nationale de la Recherche (Appel à projet BLANC 2010-HYPERCLO and Appel à Projet Générique 2014-HYPERSCREEN to D.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Eladari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eladari, D., Kumai, Y. Renal acid-base regulation: new insights from animal models. Pflugers Arch - Eur J Physiol 467, 1623–1641 (2015). https://doi.org/10.1007/s00424-014-1669-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1669-x

Key words