Skip to main content
Log in

Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located “gating brake” works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III–IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I–II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altier C, Garcia-Caballero A, Simms B, You H, Chen L, Walcher J, Tedford HW, Hermosilla T, Zamponi GW (2011) The Cav-beta subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat Neurosci 14:173–180. doi:10.1038/nn.2712

    CAS  PubMed  Google Scholar 

  2. Anderson PA, Holman MA, Greenberg RM (1993) Deduced amino acid sequence of a putative sodium channel from the scyphozoan jellyfish Cyanea capillata. Proc Natl Acad Sci U S A 90:7419–7423

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Anderson D, Mehaffey WH, Iftinca M, Rehak R, Engbers JD, Hameed S, Zamponi GW, Turner RW (2010) Regulation of neuronal activity by Cav3-Kv4 channel signaling complexes. Nat Neurosci 13:333–337. doi:10.1038/nn.2493

    CAS  PubMed  Google Scholar 

  4. Arias JM, Murbartian J, Vitko I, Lee JH, Perez-Reyes E (2005) Transfer of beta subunit regulation from high to low voltage-gated Ca2+ channels. FEBS Lett 579:3907–3912. doi:10.1016/j.febslet.2005.06.008

    CAS  PubMed  Google Scholar 

  5. Arias O II, Vitko I, Fortuna M, Baumgart JP, Sokolova S, Shumilin IA, Van Deusen A, Soriano-Garcia M, Gomora JC, Perez-Reyes E (2008) Characterization of the gating brake in the I–II loop of Ca(v)3.2 T-type Ca(2+) channels. J Biol Chem 283:8136–8144. doi:10.1074/jbc.M708761200

    Google Scholar 

  6. Armstrong CM, Matteson DR (1985) Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 227:65–67

    CAS  PubMed  Google Scholar 

  7. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108:13823–13828. doi:10.1073/pnas.1105115108

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Baumgart JP, Vitko I, Bidaud I, Kondratskyi A, Lory P, Perez-Reyes E (2008) I–II loop structural determinants in the gating and surface expression of low voltage-activated calcium channels. PLoS ONE 3:e2976. doi:10.1371/journal.pone.0002976

    PubMed Central  PubMed  Google Scholar 

  9. Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86:1–30

    CAS  PubMed  Google Scholar 

  10. Benarroch EE (2013) HCN channels: function and clinical implications. Neurology 80:304–310. doi:10.1212/WNL.0b013e31827dec42

    PubMed  Google Scholar 

  11. Bender KJ, Trussell LO (2009) Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 61:259–271. doi:10.1016/j.neuron.2008.12.004

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA (2004) Structure and function of Kv4-family transient potassium channels. Physiol Rev 84:803–833. doi:10.1152/physrev.00039.2003

    CAS  PubMed  Google Scholar 

  13. Boehme R, Uebele VN, Renger JJ, Pedroarena C (2011) Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block. J Neurophysiol 106:2653–2661. doi:10.1152/jn.00612.2011

    CAS  PubMed  Google Scholar 

  14. Buraei Z, Yang J (2013) Structure and function of the β subunit of voltage-gated Ca2+ channels. Biochim Biophys Acta 1828:1530–1540. doi:10.1016/j.bbamem.2012.08.028

    CAS  PubMed  Google Scholar 

  15. Carbone E, Lux HD (1984) A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophys J 46:413–418. doi:10.1016/S0006-3495(84)84037-0

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Carbone E, Marcantoni A, Giancippoli A, Guido D, Carabelli V (2006) T-type channels-secretion coupling: evidence for a fast low-threshold exocytosis. Pflugers Arch 453:373–383. doi:10.1007/s00424-006-0100-7

    CAS  PubMed  Google Scholar 

  17. Catterall WA (2010) Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67:915–928

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Chausson P, Leresche N, Lambert RC (2013) Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons. PLoS ONE 8:e72275. doi:10.1371/journal.pone.0072275

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Chemin J, Monteil A, Bourinet E, Nargeot J, Lory P (2001) Alternatively spliced alpha(1G) (Ca(V)3.1) intracellular loops promote specific T-type Ca(2+) channel gating properties. Biophys J 80:1238–1250. doi:10.1016/S0006-3495(01)76100-0

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302:1416–1418. doi:10.1126/science.1089268

    CAS  PubMed  Google Scholar 

  21. Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004) Structural basis of the alpha1-beta subunit interaction of voltage-gated Ca2+ channels. Nature 429:675–680. doi:10.1038/nature02641

    CAS  PubMed  Google Scholar 

  22. Chen WK, Liu IY, Chang YT, Chen YC, Chen CC, Yen CT, Shin HS, Chen CC (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30:10360–10368. doi:10.1523/JNEUROSCI.1041-10.2010

    CAS  PubMed  Google Scholar 

  23. Chen Y, Lu J, Pan H, Zhang Y, Wu H, Xu K, Liu X, Jiang Y, Bao X, Yao Z, Ding K, Lo WH, Qiang B, Chan P, Shen Y, Wu X (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54:239–243. doi:10.1002/ana.10607

    CAS  PubMed  Google Scholar 

  24. Cheng RC, Tikhonov DB, Zhorov BS (2010) Structural modeling of calcium binding in the selectivity filter of the L-type calcium channel. Eur Biophys J 39:839–853. doi:10.1007/s00249-009-0574-2

    CAS  PubMed  Google Scholar 

  25. Cheong E, Shin HS (2013) T-type Ca2+ channels in normal and abnormal brain functions. Physiol Rev 93:961–992. doi:10.1152/physrev.00010.2012

    CAS  PubMed  Google Scholar 

  26. Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, Jevtovic-Todorovic V, Todorovic SM (2011) TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol 80:900–910. doi:10.1124/mol.111.073205

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Choi J, Park JH, Kwon OY, Kim S, Chung JH, Lim DS, Kim KS, Rhim H, Han YS (2005) T-type calcium channel trigger p21ras signaling pathway to ERK in Cav3.1-expressed HEK293 cells. Brain Res 1054:22–29. doi:10.1016/j.brainres.2005.05.010

    CAS  PubMed  Google Scholar 

  28. Christel C, Lee A (2012) Ca2+-dependent modulation of voltage-gated Ca2+ channels. Biochim Biophys Acta 1820:1243–1252. doi:10.1016/j.bbagen.2011.12.012

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Crandall SR, Govindaiah G, Cox CL (2010) Low-threshold Ca2+ current amplifies distal dendritic signaling in thalamic reticular neurons. J Neurosci 30:15419–15429. doi:10.1523/JNEUROSCI.3636-10.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Cribbs L (2010) T-type calcium channel expression and function in the diseased heart. Channels (Austin) 4:447–452

    CAS  Google Scholar 

  31. Cribbs LL, Lee JH, Yang J, Satin J, Zhang Y, Daud A, Barclay J, Williamson MP, Fox M, Rees M, Perez-Reyes E (1998) Cloning and characterization of alpha1H from human heart, a member of the T-type Ca2+ channel gene family. Circ Res 83:103–109

    CAS  PubMed  Google Scholar 

  32. Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362. doi:10.1146/annurev.ph.58.030196.002025

    CAS  PubMed  Google Scholar 

  33. David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP (2010) Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 4:375–389. doi:10.4161/chan.4.5.12874

    CAS  Google Scholar 

  34. David LS, Garcia E, Cain SM, Thau E, Tyson JR, Snutch TP (2010) Splice-variant changes of the Ca(V)3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development. Channels (Austin) 4:389–389

    Google Scholar 

  35. Deschenes M, Paradis M, Roy JP, Steriade M (1984) Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges. J Neurophysiol 51:1196–1219

    CAS  PubMed  Google Scholar 

  36. Di Biase V, Franzini-Armstrong C (2005) Evolution of skeletal type e-c coupling: a novel means of controlling calcium delivery. J Cell Biol 171:695–704. doi:10.1083/jcb.200503077

    PubMed Central  PubMed  Google Scholar 

  37. Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurones. J Physiol 379:429–449

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  39. Dreyfus FM, Tscherter A, Errington AC, Renger JJ, Shin HS, Uebele VN, Crunelli V, Lambert RC, Leresche N (2010) Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. J Neurosci 30:99–109. doi:10.1523/JNEUROSCI.4305-09.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Eaholtz G, Scheuer T, Catterall WA (1994) Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron 12:1041–1048

    CAS  PubMed  Google Scholar 

  41. Emerick MC, Stein R, Kunze R, McNulty MM, Regan MR, Hanck DA, Agnew WS (2006) Profiling the array of Ca(v)3.1 variants from the human T-type calcium channel gene CACNA1G: alternative structures, developmental expression, and biophysical variations. Proteins 64:320–342. doi:10.1002/prot.20877

    CAS  PubMed  Google Scholar 

  42. Engbers JD, Anderson D, Asmara H, Rehak R, Mehaffey WH, Hameed S, McKay BE, Kruskic M, Zamponi GW, Turner RW (2012) Intermediate conductance calcium-activated potassium channels modulate summation of parallel fiber input in cerebellar Purkinje cells. Proc Natl Acad Sci U S A 109:2601–2606. doi:10.1073/pnas.1115024109

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Errington AC, Renger JJ, Uebele VN, Crunelli V (2010) State-dependent firing determines intrinsic dendritic Ca2+ signaling in thalamocortical neurons. J Neurosci 30:14843–14853. doi:10.1523/JNEUROSCI.2968-10.2010

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol 359:431–446

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Gray LS, Macdonald TL (2006) The pharmacology and regulation of T type calcium channels: new opportunities for unique therapeutics for cancer. Cell Calcium 40:115–120

    CAS  PubMed  Google Scholar 

  46. Hagiwara S, Ozawa S, Sand O (1975) Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65:617–644

    CAS  PubMed  Google Scholar 

  47. Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441–443. doi:10.1038/356441a0

    CAS  PubMed  Google Scholar 

  48. Hille B (2001) Selective permeability: independence ion channels of excitable membranes, Third Edition. Sinauer Associates, Incorporated, pp. 441–470

  49. Hosford DA, Clark S, Cao Z, Wilson WA Jr, Lin FH, Morrisett RA, Huin A (1992) The role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257:398–401

    CAS  PubMed  Google Scholar 

  50. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signaling and phenotypic switching during vascular disease. Pflugers Arch 456:769–785. doi:10.1007/s00424-008-0491-8

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Huang Z, Lujan R, Kadurin I, Uebele VN, Renger JJ, Dolphin AC, Shah MM (2011) Presynaptic HCN1 channels regulate Cav3.2 activity and neurotransmission at select cortical synapses. Nat Neurosci 14:478–486. doi:10.1038/nn.2757

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227–247

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205–226

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim D, Song I, Keum S, Lee T, Jeong MJ, Kim SS, McEnery MW, Shin HS (2001) Lack of the burst firing of thalamocortical relay neurons and resistance to absence seizures in mice lacking alpha(1G) T-type Ca(2+) channels. Neuron 31:35–45

    CAS  PubMed  Google Scholar 

  55. Lambert RC, Bessaih T, Crunelli V, Leresche N (2013) The many faces of T-type calcium channels. Pflugers Arch. doi:10.1007/s00424-013-1353-6

    PubMed Central  Google Scholar 

  56. Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Glia 48:112–119. doi:10.1002/glia.20063

    PubMed  Google Scholar 

  57. Latour I, Louw DF, Beedle AM, Hamid J, Sutherland GR, Zamponi GW (2004) Expression of T-type calcium channel splice variants in human glioma. Wiley Subscription Services, Inc., A Wiley Company, pp. 112–119

  58. Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921

    CAS  PubMed  Google Scholar 

  59. Liang J, Zhang Y, Chen Y, Wang J, Pan H, Wu H, Xu K, Liu X, Jiang Y, Shen Y, Wu X (2007) Common polymorphisms in the CACNA1H gene associated with childhood absence epilepsy in Chinese Han population. Ann Hum Genet 71:325–335. doi:10.1111/j.1469-1809.2006.00332.x

    CAS  PubMed  Google Scholar 

  60. Liebeskind BJ, Hillis DM, Zakon HH (2011) Evolution of sodium channels predates the origin of nervous systems in animals. Proc Natl Acad Sci U S A 108:9154–9159. doi:10.1073/pnas.1106363108

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Lin YC, Spencer AN (2001) Calcium currents from jellyfish striated muscle cells: preservation of phenotype, characterisation of currents and channel localisation. J Exp Biol 204:3717–3726

    CAS  PubMed  Google Scholar 

  62. Liu JH, Konig S, Michel M, Arnaudeau S, Fischer-Lougheed J, Bader CR, Bernheim L (2003) Acceleration of human myoblast fusion by depolarization: graded Ca2+ signals involved. Development 130:3437–3446

    CAS  PubMed  Google Scholar 

  63. Llinas R, Jahnsen H (1982) Electrophysiology of mammalian thalamic neurones in vitro. Nature 297:406–408

    CAS  PubMed  Google Scholar 

  64. Llinas R, Yarom Y (1981) Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol 315:549–567

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Long SB, Campbell EB, Mackinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908. doi:10.1126/science.1116270

    CAS  PubMed  Google Scholar 

  66. Lory P, Bidaud I, Chemin J (2006) T-type calcium channels in differentiation and proliferation. Cell Calcium 40:135–146. doi:10.1016/j.ceca.2006.04.017

    CAS  PubMed  Google Scholar 

  67. Mackie GO, Meech RW (1985) Separate sodium and calcium spikes in the same axon. Nature 313:791–793

    CAS  PubMed  Google Scholar 

  68. Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268:301–304

    CAS  PubMed  Google Scholar 

  69. Mangoni ME, Traboulsie A, Leoni AL, Couette B, Marger L, Le Quang K, Kupfer E, Cohen-Solal A, Vilar J, Shin HS, Escande D, Charpentier F, Nargeot J, Lory P (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking CaV3.1/alpha1G T-type calcium channels. Circ Res 98:1422–1430. doi:10.1161/01. RES.0000225862.14314.49

    CAS  PubMed  Google Scholar 

  70. Markram H, Sakmann B (1994) Calcium transients in dendrites of neocortical neurons evoked by single subthreshold excitatory postsynaptic potentials via low-voltage-activated calcium channels. Proc Natl Acad Sci U S A 91:5207–5211

    CAS  PubMed Central  PubMed  Google Scholar 

  71. McKay BE, McRory JE, Molineux ML, Hamid J, Snutch TP, Zamponi GW, Turner RW (2006) Ca(V)3 T-type calcium channel isoforms differentially distribute to somatic and dendritic compartments in rat central neurons. Eur J Neurosci 24:2581–2594. doi:10.1111/j.1460-9568.2006.05136.x

    PubMed  Google Scholar 

  72. Monteil A, Chemin J, Bourinet E, Mennessier G, Lory P, Nargeot J (2000) Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels. J Biol Chem 275:6090–6100

    CAS  PubMed  Google Scholar 

  73. Mor M, Beharier O, Levy S, Kahn J, Dror S, Blumenthal D, Gheber LA, Peretz A, Katz A, Moran A, Etzion Y (2012) ZnT-1 enhances the activity and surface expression of T-type calcium channels through activation of Ras-ERK signaling. Am J Physiol Cell Physiol 303:C192–C203. doi:10.1152/ajpcell.00427.2011

    CAS  PubMed  Google Scholar 

  74. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316:440–443

    CAS  PubMed  Google Scholar 

  75. Ohkubo T (2005) Identification and electrophysiological characteristics of isoforms of T-type calcium channel Cav3.2 expressed in pregnant human uterus. Cell Physiol Biochem 16:245–254. doi:10.1159/000089850

    CAS  PubMed  Google Scholar 

  76. Ono K, Iijima T (2010) Cardiac T-type Ca(2+) channels in the heart. J Mol Cell Cardiol 48:65–70. doi:10.1016/j.yjmcc.2009.08.021

    CAS  PubMed  Google Scholar 

  77. Park HJ, Park SJ, Ahn EJ, Lee SY, Seo H, Lee JH (2013) Asp residues of the Glu-Glu-Asp-Asp pore filter contribute to ion permeation and selectivity of the Cav3.2 T-type channel. Cell Calcium 54:226–235. doi:10.1016/j.ceca.2013.06.006

    CAS  PubMed  Google Scholar 

  78. Payandeh J, Scheuer T, Zheng N, Catterall WA (2011) The crystal structure of a voltage-gated sodium channel. Nature 475:353–358

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated t-type calcium channels. Physiol Rev 83:117–161. doi:10.1152/physrev.00018.2002

    CAS  PubMed  Google Scholar 

  80. Perez-Reyes E (2010) Characterization of the gating brake in the I–II loop of CaV3 T-type calcium channels. Channels (Austin) 4:453–458

    CAS  Google Scholar 

  81. Perez-Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee JH (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900

    CAS  PubMed  Google Scholar 

  82. Schlief T, Schonherr R, Imoto K, Heinemann SH (1996) Pore properties of rat brain II sodium channels mutated in the selectivity filter domain. Eur Biophys J 25:75–91

    CAS  PubMed  Google Scholar 

  83. Senatore A, Spafford JD (2014) Physiology and pathology of voltage-gated T-type calcium channels. In: Schaffer SW, Wu Songwei, Li Ming (eds) T-type calcium channel in basic and clinical sciences. Springer

  84. Senatore A, Guan W, Stephens RF, Boone AN, Spafford JD (2013) T-Type calcium channels become sodium-permeable using an alternate extracellular turret outside the selectivity filter

  85. Senatore A, Monteil A, van Minnen J, Smit AB, Spafford JD (2013) NALCN ion channels have alternative selectivity filters resembling calcium channels or sodium channels. PLoS ONE 8:e55088. doi:10.1371/journal.pone.0055088

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Senatore A, Spafford JD (2010) Transient and big are key features of an invertebrate T-type channel (LCav3) from the central nervous system of Lymnaea stagnalis. J Biol Chem 285:7447–7458. doi:10.1074/jbc.M109.090753

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Senatore A, Spafford JD (2012) Gene transcription and splicing of T-type channels are evolutionarily-conserved strategies for regulating channel expression and gating. PLoS ONE 7:e37409. doi:10.1371/journal.pone.0037409

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Senatore A, Spafford JD (2013) Expression and characterization of an extant placozoan T-type channel provides insights into the primordial Cav3 gene

  89. Senatore A, Spafford JD (2013) A uniquely adaptable pore is consistent with NALCN being an ion sensor. Channels (Austin) 7:60–68

    Google Scholar 

  90. Senatore A, Zhorov BS, Spafford JD (2012) Cav3 T-type calcium channels. Wiley Interdisciplinary Reviews: Membrane Transport and Signaling

  91. Shcheglovitov A, Kostyuk P, Shuba Y (2007) Selectivity signatures of three isoforms of recombinant T-type Ca2+ channels. Biochim Biophys Acta 1768:1406–1419. doi:10.1016/j.bbamem.2007.02.017

    CAS  PubMed  Google Scholar 

  92. Shcheglovitov A, Vitko I, Bidaud I, Baumgart JP, Navarro-Gonzalez MF, Grayson TH, Lory P, Hill CE, Perez-Reyes E (2008) Alternative splicing within the I–II loop controls surface expression of T-type Ca(v)3.1 calcium channels. FEBS Lett 582:3765–3770. doi:10.1016/j.febslet.2008.10.013

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Spafford JD, Spencer AN, Gallin WJ (1998) A putative voltage-gated sodium channel alpha subunit (PpSCN1) from the hydrozoan jellyfish, Polyorchis penicillatus: structural comparisons and evolutionary considerations. Biochem Biophys Res Commun 244:772–780. doi:10.1006/bbrc.1998.8332

    CAS  PubMed  Google Scholar 

  94. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454:955–960. doi:10.1038/nature07191

    CAS  PubMed  Google Scholar 

  95. Steger KA, Shtonda BB, Thacker C, Snutch TP, Avery L (2005) The C. elegans T-type calcium channel CCA-1 boosts neuromuscular transmission. J Exp Biol 208:2191–2203. doi:10.1242/jeb.01616

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Talavera K, Nilius B (2006) Biophysics and structure-function relationship of T-type Ca2+ channels. Cell Calcium 40:97–114. doi:10.1016/j.ceca.2006.04.013

    CAS  PubMed  Google Scholar 

  97. Talavera K, Staes M, Janssens A, Klugbauer N, Droogmans G, Hofmann F, Nilius B (2001) Aspartate residues of the Glu-Glu-Asp-Asp (EEDD) pore locus control selectivity and permeation of the T-type Ca(2+) channel alpha(1G). J Biol Chem 276:45628–45635. doi:10.1074/jbc.M103047200

    CAS  PubMed  Google Scholar 

  98. Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA (1999) Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 19:1895–1911

    CAS  PubMed  Google Scholar 

  99. Tang L, Gamal El-Din TM, Payandeh J, Martinez GQ, Heard TM, Scheuer T, Zheng N, Catterall WA (2014) Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505:56–61. doi:10.1038/nature12775

    PubMed  Google Scholar 

  100. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M (2008) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Trimarchi T, Pachuau J, Shepherd A, Dey D, Martin-Caraballo M (2009) CNTF-evoked activation of JAK and ERK mediates the functional expression of T-type Ca2+ channels in chicken nodose neurons. J Neurochem 108:246–259. doi:10.1111/j.1471-4159.2008.05759.x

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Uebele VN, Nuss CE, Fox SV, Garson SL, Cristescu R, Doran SM, Kraus RL, Santarelli VP, Li Y, Barrow JC, Yang ZQ, Schlegel KA, Rittle KE, Reger TS, Bednar RA, Lemaire W, Mullen FA, Ballard JE, Tang C, Dai G, McManus OB, Koblan KS, Renger JJ (2009) Positive allosteric interaction of structurally diverse T-type calcium channel antagonists. Cell Biochem Biophys 55:81–93. doi:10.1007/s12013-009-9057-4

    CAS  PubMed  Google Scholar 

  103. Vitko I, Bidaud I, Arias JM, Mezghrani A, Lory P, Perez-Reyes E (2007) The I–II loop controls plasma membrane expression and gating of Ca(v)3.2 T-type Ca2+ channels: a paradigm for childhood absence epilepsy mutations. J Neurosci 27:322–330. doi:10.1523/JNEUROSCI.1817–06

    CAS  PubMed  Google Scholar 

  104. Vitko I, Shcheglovitov A, Baumgart JP, Arias O II, Murbartian J, Arias JM, Perez-Reyes E (2008) Orientation of the calcium channel beta relative to the alpha(1)2.2 subunit is critical for its regulation of channel activity. PLoS ONE 3:e3560

    PubMed Central  PubMed  Google Scholar 

  105. Waithe D, Ferron L, Page KM, Chaggar K, Dolphin AC (2011) Beta-subunits promote the expression of Ca(V)2.2 channels by reducing their proteasomal degradation. J Biol Chem 286:9598–9611. doi:10.1074/jbc.M110.195909

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wang F, Gao H, Kubo H, Fan X, Zhang H, Berretta R, Chen X, Sharp T, Starosta T, Makarewich C, Li Y, Molkentin JD, Houser SR (2013) T-type Ca2+ channels regulate the exit of cardiac myocytes from the cell cycle after birth. J Mol Cell Cardiol 62:122–130. doi:10.1016/j.yjmcc.2013.05.016

    CAS  PubMed  Google Scholar 

  107. Weiss N, Hameed S, Fernandez-Fernandez JM, Fablet K, Karmazinova M, Poillot C, Proft J, Chen L, Bidaud I, Monteil A, Huc-Brandt S, Lacinova L, Lory P, Zamponi GW, De Waard M (2012) A Ca(v)3.2/syntaxin-1A signaling complex controls T-type channel activity and low-threshold exocytosis. J Biol Chem 287:2810–2818. doi:10.1074/jbc.M111.290882

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Williams SR, Toth TI, Turner JP, Hughes SW, Crunelli V (1997) The ‘window’ component of the low threshold Ca2+ current produces input signal amplification and bistability in cat and rat thalamocortical neurones. J Physiol 505(Pt 3):689–705

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Zhang T, Wang Z, Wang L, Luo N, Jiang L, Liu Z, Wu CF, Dong K (2013) Role of the DSC1 channel in regulating neuronal excitability in Drosophila melanogaster: extending nervous system stability under stress. PLoS Genet 9:e1003327. doi:10.1371/journal.pgen.1003327

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Zhong X (2006) A profile of alternative RNA splicing and transcript variation of CACNA1H, a human T-channel gene candidate for idiopathic generalized epilepsies. Hum Mol Genet 15:1497–1512. doi:10.1093/hmg/ddl068

    CAS  PubMed  Google Scholar 

  111. Zhorov BS, Tikhonov DB (2013) Ligand action on sodium, potassium, and calcium channels: role of permeant ions. Trends Pharmacol Sci. doi:10.1016/j.tips.2013.01.002

    PubMed  Google Scholar 

  112. Zhou W, Chung I, Liu Z, Goldin AL, Dong K (2004) A voltage-gated calcium-selective channel encoded by a sodium channel-like gene. Neuron 42:101–112

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Spafford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senatore, A., Guan, W. & Spafford, J.D. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch - Eur J Physiol 466, 645–660 (2014). https://doi.org/10.1007/s00424-014-1449-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1449-7

Keywords