Skip to main content

Advertisement

Log in

T-type Ca2+ channels and the urinary and male genital tracts

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

T-type Ca2+ channels are widely expressed throughout the urinary and male genital tracts, generally alongside L-type Ca2+ channels. The use of pharmacological blockers of these channels has suggested functional roles in all regions, with the possible exception of the ureter. Their functional expression is apparent not just in smooth muscle cells but also in interstitial cells that lie in close proximity to muscle, nerve and epithelial components of these tissues. Thus, T-type Ca2+ channels can contribute directly to modulation of muscle function and indirectly to changes of epithelial and nerve function. T-type Ca2+ channel activity modulates phasic contractile activity, especially in conjunction with Ca2+-activated K+ channels, and also to agonist-dependent responses in different tissues. Upregulation of channel density occurs in pathological conditions associated with enhanced contractile responses, e.g. overactive bladder, but it is unclear if this is causal or a response to the pathological state. Moreover, T-type Ca2+ channels may have a role in the development of prostate tumours regulating the secretion of mitogens from neuroendocrine cells. Although a number of selective channel blockers exist, their relative selectivity over L-type Ca2+ channels is often low and makes evaluation of T-type Ca2+ channel function in the whole organism difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akino H, Chapple CR, McKay N, Cross RL, Murakami S, Yokoyama O, Chess-Williams R, Sellers DJ (2008) Spontaneous contractions of the pig urinary bladder: the effect of ATP-sensitive potassium channels and the role of the mucosa. BJU Int 102:1168–1174

    Article  PubMed  Google Scholar 

  2. Amobi N, Guillebaud J, Smith CH (2009) Comparative effects of T-type and L-type Ca2+-antagonists against noradrenaline-induced contractions of human vas deferens. BJU Int 106:578–585

    Article  PubMed  Google Scholar 

  3. Andersson KE (2001) Pharmacology of penile erection. Pharmacol Rev 53:417–450

    CAS  PubMed  Google Scholar 

  4. Ashoori F, Tomita T (1983) Mechanical response to noradrenaline in calcium-free solution in the rat vas deferens. J Physiol 338:165–178

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Badawi JK, Li H, Langbein S, Kamp S, Guzman S, Bross S (2006) Inhibitory effects of various L-type and T-type calcium antagonists on electrically generated, potassium-induced and carbachol-induced contractions of porcine detrusor muscle. J Comp Physiol B 176:429–439

    Article  CAS  PubMed  Google Scholar 

  6. Badawi JK, Li H, Langbein S, Kwon ST, Kamp S, Bross S (2006) Inhibitory effects of L- and T-type calcium antagonists on contractions of human detrusor muscle. Eur J Clin Pharmacol 62:347–354

    Article  CAS  PubMed  Google Scholar 

  7. Bean BP (1985) Two kinds of calcium channels in canine atrial cells. Differences in kinetics, selectivity, and pharmacology. J Gen Physiol 86:1–30

    Article  CAS  PubMed  Google Scholar 

  8. Berjukow S, Margreiter E, Marksteiner R, Strasser H, Bartsch G, Hering S (2004) Membrane properties of single muscle cells of the rhabdosphincter of the male urethra. Prostate 58:238–247

    Article  PubMed  Google Scholar 

  9. Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signalling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci U S A 97:7627–7632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bradley JE, Anderson UA, Woolsey SM, Thornbury KD, McHale NG, Hollywood MA (2004) Characterization of T-type calcium current and its contribution to electrical activity in rabbit urethra. Am J Physiol Cell Physiol 286:C1078–C1088

    Article  CAS  PubMed  Google Scholar 

  11. Bradley E, Hollywood MA, Johnston L, Large RJ, Matsuda T, Baba A, McHale NG, Thornbury KD, Sergeant GP (2006) Contribution of reverse Na+-Ca2+ exchange to spontaneous activity in interstitial cells of Cajal in the rabbit urethra. J Physiol 574:651–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bradley E, Hollywood MA, McHale NG, Thornbury KD, Sergeant GP (2005) Pacemaker activity in urethral interstitial cells is not dependent on capacitative calcium entry. Am J Physiol Cell Physiol 289:C625–632

    Article  CAS  PubMed  Google Scholar 

  13. Brain KL, Cuprian AM, Williams DJ, Cunnane TC (2003) The sources and sequestration of Ca2+ contributing to neuroeffector Ca2+ transients in the mouse vas deferens. J Physiol 553:627–635

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Choi JY, Seo HN, Lee MJ, Park SJ, Park SJ, Jeon JY, Kang JH, Pae AN, Rhim H, Lee JY (2007) Synthesis and biological evaluation of novel T-type calcium channel blockers. Bioorg Med Chem Lett 17:471–475

    Article  CAS  PubMed  Google Scholar 

  15. Chow KY, Wu C, Sui GP, Fry CH (2003) Role of the T-type Ca2+ current on the contractile performance of guinea pig detrusor smooth muscle. Neurourol Urodyn 22:77–82

    Article  CAS  PubMed  Google Scholar 

  16. Clozel JP, Ertel EA, Ertel SI (1997) Discovery and main pharmacological properties of mibefradil (Ro 40–5967), the first selective T-type calcium channel blocker. J Hypertens Suppl 15:S17–S25

    Article  CAS  PubMed  Google Scholar 

  17. Deng J, He P, Zhong X, Wang Q, Li L, Song B (2012) Identification of T-type calcium channels in the interstitial cells of Cajal in rat bladder. Urology 280:1389.e1–1389.e7

    Google Scholar 

  18. Díaz-Lezama N, Hernández-Elvira M, Sandoval A, Monroy A, Felix R, Monjaraz E (2010) Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells. Biochem Biophys Res Comm 403:24–29

    Article  PubMed  Google Scholar 

  19. Ekman M, Andersson K-E, Arner A (2009) Receptor-induced phasic activity of newborn mouse bladders is inhibited by protein kinase C and involves T-type Ca2+ channels. BJU Int 104:690–697

    Article  CAS  PubMed  Google Scholar 

  20. Fry CH, Chacko S, Chess-Williams R, de Wachter S, Kanai AJ, Takeda M, Young JS (2013) Cell biology. In Incontinence, 5th edition, ed Paul Abrams, Linda Cardozo, Saad Khoury and Alan Wein, ISBN: 978-9953-493-21-3

  21. Furukawa T, Nukada T, Miura R, Ooga K, Honda M, Watanabe S, Koganesawa S, Isshiki T (2005) Differential blocking action of dihydropyridine Ca2+ antagonists on a T-type Ca2+ channel (alpha1G) expressed in Xenopus oocytes. J Cardiovasc Pharmacol 45:241–246

    Article  CAS  PubMed  Google Scholar 

  22. Gackiere F, Bidaux G, Delcourt P, van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Tran Van Chuoï-Mariot M, Mauroy B, Prevarskaya N, Mariot P (2008) CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 283:10162–10173

    Article  CAS  PubMed  Google Scholar 

  23. Gackiere F, Warnier M, Katsogiannou M, Derouiche S, Delcourt P, Dewailly E, Slomianny C, Humez S, Prevarskaya N, Roudbaraki M, Mariot P (2013) Functional coupling between large-conductance potassium channels and Cav3.2 voltage-dependent calcium channels participates in prostate cancer cell growth. Biol Open 2:941–951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hashitani H, Suzuki H (2007) Properties of spontaneous Ca2+ transients recorded from interstitial cells of Cajal-like cells of the rabbit urethra in situ. J Physiol 583:505–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Heady TN, Gomora JC, Macdonald TL, Perez-Reyes E (2001) Molecular pharmacology of T-type Ca2+ channels. Jpn J Pharmacol 85:339–350

    Article  CAS  PubMed  Google Scholar 

  26. Hollywood MA, Woolsey S, Walsh IK, Keane PF, McHale NG, Thornbury KD (2003) T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra. J Physiol 550:753–764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. House SJ, Potier M, Bisaillon J, Singer HA, Trebak M (2008) The non-excitable smooth muscle: calcium signalling and phenotypic switching during vascular disease. Pflüg Archiv 456:769–785

    Article  CAS  Google Scholar 

  28. Huang L, Keyser BM, Tagmose TM, Hansen JB, Taylor JT, Zhuang H, Zhang M, Ragsdale DS, Li M (2004) NNC 55–0396 [(1S, 2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methyl amino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropane carboxy-late dihydrochloride]: a new selective inhibitor of T-type calcium channels. J Pharmacol Exp Ther 309:193–199

    Article  CAS  PubMed  Google Scholar 

  29. Igawa Y, Kumano S, Aizawa N, Saito Y, Ito H, Watanabe S, Takahashi N, Tajimi M, Nishimatsu H, Homma Y (2013) Changes in the function and expression of T-type and N-type calcium channels in the rat bladder after bladder outlet obstruction. J Urol In the Press. doi:10.1016/j.juro.2013.10.027

  30. Imaizumi Y, Muraki K, Watanabe M (1989) Ionic currents in single smooth muscle cells from the ureter of the guinea-pig. J Physiol 411:131–159

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Jacus MO, Uebele VN, Renger JJ, Todorovic SM (2012) Presynaptic Cav3.2 channels regulate excitatory neurotransmission in nociceptive dorsal horn neurons. J Neurosci 32:9374–9382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Jeffery PL, Herington AC, Chopin LK (2002) Expression and action of the growth hormone releasing peptide ghrelin and its receptor in prostate cancer cell lines. J Endocrinol 172:7–11

    Article  Google Scholar 

  33. Jiang X, Luttrell I, Chitaley K, Yang CC (2014) T- and L-type voltage-gated calcium channels: their role in diabetic bladder dysfunction. Neurourol Urodyn 33:147–152

    Google Scholar 

  34. Klöckner U, Lee JH, Cribbs LL, Daud A, Hescheler J, Pereverzev A, Perez-Reyes E, Schneider T (1999) Comparison of the Ca2+ currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, of low-voltage-activated T-type Ca2+ channels. Eur J Neurosci 11:4171–4178

    Article  PubMed  Google Scholar 

  35. Lam M, Shigemasa Y, Exintaris B, Lang RJ, Hashitani H (2011) Spontaneous Ca2+ signaling of interstitial cells in the guinea pig prostate. J Urol 186:2478–2486

    Article  CAS  PubMed  Google Scholar 

  36. Lang RJ (1989) Identification of the major membrane currents in freshly dispersed single smooth muscle cells of guinea-pig ureter. J Physiol 412:375–395

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Lang RJ (1990) The whole-cell Ca2+ channel current in single smooth muscle cells of the guinea-pig ureter. J Physiol 423:453–473

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Lang F, Föller M, Lang KS, Lang PA, Ritter M, Gulbins E, Vereninov A, Huber SM (2005) Ion channels in cell proliferation and apoptotic cell death. J Membr Biol 205:147–157

    Article  CAS  PubMed  Google Scholar 

  39. Lang RJ, Hashitani H, Tonta MA, Parkington HC, Suzuki H (2007) Spontaneous electrical and Ca2+ signals in typical and atypical smooth muscle cells and interstitial cell of Cajal-like cells of mouse renal pelvis. J Physiol 583:1049–1068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Lang RJ, Mulholland E, Exintaris B (2004) Characterization of the ion channel currents in single myocytes of the guinea pig prostate. J Urol 172:1179–1187

    Article  CAS  PubMed  Google Scholar 

  41. Lang RJ, Tonta MA, Takano H, Hashitani H (2014) Voltage-operated Ca2+ currents and Ca2+-activated Cl currents in single interstitial cells of the guinea-pig prostate. BJUInt

  42. Lang RJ, Tonta MA, Zoltkowski BZ, Meeker WF, Wendt I, Parkington HC (2006) Pyeloureteric peristalsis: role of atypical smooth muscle cells and interstitial cells of Cajal-like cells as pacemakers. J Physiol 576:695–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Lee JH, Gomora JC, Cribbs LL, Perez-Reyes E (1999) Nickel block of three cloned T-type calcium channels: low concentrations selectively block α1H. Biophys J 77:3034–3042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lee HK, Sanders KM (1993) Comparison of ionic currents from interstitial cells and smooth muscle cells of canine colon. J Physiol 460:135–152

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Li L, Jiang C, Hao P, Li W, Fan L, Zhou Z, Song B (2007) Changes in T-type calcium channel and its subtypes in overactive detrusor of the rats with partial bladder outflow obstruction. Neurourol Urodyn 26:870–878

    Article  CAS  PubMed  Google Scholar 

  46. Maggi CA, Giuliani S (1995) A pharmacological analysis of calcium channels involved in phasic and tonic responses of the guinea-pig ureter to high potassium. J Auton Pharmacol 15:55–64

    Article  CAS  PubMed  Google Scholar 

  47. Mariot P, Vanoverberghe K, Lalevée N, Rossier MF, Prevarskaya N (2002) Differentiation of human prostate cancer calcium channel during neuroendocrine overexpression. J Biol Chem 277:10824–10833

    Article  CAS  PubMed  Google Scholar 

  48. Martin-Cano FE, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2009) Spontaneous calcium oscillations in urinary bladder smooth muscle cells. J Physiol Pharmacol 60:93–99

    CAS  PubMed  Google Scholar 

  49. Matsunami M, Miki T, Nishiura K, Hayashi Y, Okawa Y, Nishikawa H, Sekiguchi F, Kubo L, Ozaki T, Tsujiuchi T, Kawabata A (2012) Involvement of the endogenous hydrogen sulfide/Cav3.2 T-type Ca2+ channel pathway in cystitis-related bladder pain in mice. Br J Pharmacol 167:917–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. McCloskey C, Cagney V, Large R, Hollywood M, Sergeant G, McHale N, Thornbury K (2009) Voltage-dependent Ca2+ currents contribute to spontaneous Ca2+ waves in rabbit corpus cavernosum myocytes. J Sex Med 6:3019–3031

    Article  CAS  PubMed  Google Scholar 

  51. Montgomery BS, Fry CH (1992) The action potential and net membrane currents in isolated human detrusor smooth muscle cells. J Urol 147:176–184

    CAS  PubMed  Google Scholar 

  52. Nilius B, Prenen J, Kamouchi M, Viana F, Voets T, Droogmans G (1997) Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+- and volume-activated Cl channels in macrovascular endothelial cells. Br J Pharmacol 121:547–555

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Oh SJ, Kim KM, Chung YS, Hong EK, Shin SY, Kim SJ (2003) Ion-channel currents of smooth muscle cells isolated from the prostate of guinea-pig. BJU Int 92:1022–1030

    Article  CAS  PubMed  Google Scholar 

  54. Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259

    Article  CAS  PubMed  Google Scholar 

  55. Park SY, Lee MY, Keum EM, Myung SC, Kim SC (2004) Ionic currents in single smooth muscle cells of the human vas deferens. J Urol 172:628–633

    Article  CAS  PubMed  Google Scholar 

  56. Perchenet L, Clément-Chomienne O (2000) Characterization of mibefradil block of the human heart delayed rectifier hKv1.5. J Pharmacol Exp Ther 295:771–8

    CAS  PubMed  Google Scholar 

  57. Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  58. Pirisino R, Banchelli G, Ignesti G, Mantelli L, Matucci R, Raimondi L, Buffoni F (1993) Calcium modulatory properties of 2,6-dibutylbenzylamine (B25) in rat isolated vas deferens, cardiac and smooth muscle preparations. Br J Pharmacol 109:1038–1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rodman DM, Reese K, Harral J, Fouty B, Wu S, West J, Hoedt-Miller M, Tada Y, Li KX, Cool C, Fagan K, Cribbs L (2005) Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes. Circ Res 96:864–872

    Article  CAS  PubMed  Google Scholar 

  60. Roosen A, Wu C, Sui G, Chowdhury RA, Patel PM, Fry CH (2009) Characteristics of spontaneous activity in the bladder trigone. Eur Urol 56:346–353

    Article  CAS  PubMed  Google Scholar 

  61. Sergeant GP, Hollywood MA, McCloskey KD, McHale NG, Thornbury KD (2001) Role of IP3 in modulation of spontaneous activity in pacemaker cells of rabbit urethra. Am J Physiol Cell Physiol 280:C1349–C1356

    CAS  PubMed  Google Scholar 

  62. Sergeant GP, McCloskey KD, Hollywood MA, Thornbury KD, McHale NG (2000) Specialised pacemaking cells in the rabbit urethra. J Physiol 526:359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Seto SW, Docherty JR (2010) Effects of T-type calcium channel blockers and thalidomide on contractions of rat vas deferens. Br J Pharmacol 159:1211–1216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Shishido T, Sakai S, Tosaka T (2009) T- and L-type calcium channels mediate α1-adrenoceptor-evoked contraction in the guinea-pig vas deferens. Neurourol Urodyn 28:447–454

    Article  CAS  PubMed  Google Scholar 

  65. Smith RD, Borisova L, Wray S, Burdyga T (2002) Characterisation of the ionic currents in freshly isolated rat ureter smooth muscle cells: evidence for species-dependent currents. Pflugers Arch 445:444–453

    Article  CAS  PubMed  Google Scholar 

  66. Sneddon P, Westfall DP (1984) Pharmacological evidence that adenosine triphosphate and noradrenaline are co-transmitters in the guinea-pig vas deferens. J Physiol 347:561–580

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Strasser H, Frauscher F, Helweg G, Colleselli K, Reissigl A, Bartsch G (1998) Transurethral ultrasound: evaluation of anatomy and function of the rhabdosphincter of the male urethra. J Urol 159:100–105

    Article  CAS  PubMed  Google Scholar 

  68. Strege PR, Bernard CE, Ou Y, Gibbons SJ, Farrugia G (2005) Effect of mibefradil on sodium and calcium currents. Am J Physiol Gastrointest Liver Physiol 289:G249–G253

    Article  CAS  PubMed  Google Scholar 

  69. Sui G, Fry CH, Malone-Lee J, Wu C (2009) Aberrant Ca2+ oscillations in smooth muscle cells from overactive human bladders. Cell Calcium 45:456–464

    Article  CAS  PubMed  Google Scholar 

  70. Sui GP, Wu C, Fry CH (2001) Inward calcium currents in cultured and freshly isolated detrusor muscle cells: evidence of a T-type calcium current. J Urol 165:621–626

    Article  CAS  PubMed  Google Scholar 

  71. Sui GP, Wu C, Fry CH (2003) A description of Ca2+ channels in human detrusor smooth muscle. BJU Int 92:476–482

    Article  CAS  PubMed  Google Scholar 

  72. Sui GP, Wu C, Fry CH (2004) Ca2+ currents in smooth muscle cells isolated from human prostate. Prostate 59:275–281

    Article  CAS  PubMed  Google Scholar 

  73. Sui GP, Wu C, Severs N, Newgreen D, Fry CH (2007) The association between T-type Ca2+ current and outward current in isolated human detrusor cells from stable and overactive bladders. BJU Int 99:436–441

    Article  CAS  PubMed  Google Scholar 

  74. Taylor JT, Zeng XB, Pottle JE, Lee K, Wang AR, Yi SG, Scruggs JA, Sikka SS, Li M (2008) Calcium signaling and T-type calcium channels in cancer cell cycling. World J Gastroenterol 14:4984–4991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Wang JP, Ding GF, Wang QZ (2013) Interstitial cells of Cajal mediate excitatory sympathetic neurotransmission in guinea pig prostate. Cell Tissue Res 352:479–486

    Article  CAS  PubMed  Google Scholar 

  76. Williams BA, Sims SM (2007) Calcium sparks activate calcium-dependent Cl current in rat corpus cavernosum smooth muscle cells. Am J Physiol 293:C1239–C1251

    Article  CAS  Google Scholar 

  77. Wu C, Sui G, Fry CH (2002) The role of the L-type Ca2+ channel in refilling functional intracellular Ca2+ stores in guinea-pig detrusor smooth muscle. J Physiol 538:357–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Xi Q, Angus JA (2001) Evidence against an action of mibefradil at N-type voltage-operated calcium channels. Naunyn Schmiedebergs Arch Pharmacol 364:430–436

    Article  CAS  PubMed  Google Scholar 

  79. Xi Q, Ziogas J, Roberts JA, Evans RJ, Angus JA (2002) Involvement of T-type calcium channels in excitatory junction potentials in rat resistance mesenteric arteries. Br J Pharmacol 137:805–812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Yanai Y, Hashitani H, Kubota Y, Sasaki S, Kohri K, Suzuki H (2006) The role of Ni2+-sensitive T-type Ca2+ channels in the regulation of spontaneous excitation in detrusor smooth muscles of the guinea-pig bladder. BJU Int 97:182–189

    Article  CAS  PubMed  Google Scholar 

  81. Yeh AH, Jeffery PL, Duncan RP, Herington AC, Chopin LK (2005) Ghrelin and a novel preproghrelin isoform are highly expressed in prostate cancer and ghrelin activates mitogen-activated protein kinase in prostate cancer. Clin Cancer Res 2011:8295–8303

    Article  Google Scholar 

  82. Zeng X, Keyser B, Li M, Sikka SC (2005) T-type (α1G) low voltage-activated calcium channel interactions with nitric oxide-cyclic guanosine monophosphate pathway and regulation of calcium homeostasis in human cavernosal cells. J Sex Med 2:620–630

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Jiang X, Snutch TP, Tao J (2013) Modulation of low-voltage-activated T-type Ca2+ channels. Biochim Biophys Acta 1828:1550–1559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. H. Fry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, C.H., Jabr, R.I. T-type Ca2+ channels and the urinary and male genital tracts. Pflugers Arch - Eur J Physiol 466, 781–789 (2014). https://doi.org/10.1007/s00424-014-1446-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-014-1446-x

Keywords

Navigation