Skip to main content
Log in

5-HT2A receptor-mediated excitation on cerebellar fastigial nucleus neurons and promotion of motor behaviors in rats

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

It has long been known that serotonergic afferent inputs are the third largest afferent population in the cerebellum after mossy fibers and climbing fibers. However, the role of serotonergic inputs in cerebellar-mediated motor behaviors is still largely unknown. Here, we show that only 5-HT2A receptors among the 5-HT2 receptor subfamily are expressed and localized in the rat cerebellar fastigial nucleus (FN), one of the ultimate outputs of the spinocerebellum precisely regulating trunk and limb movements. Remarkably, selective activation of 5-HT2A receptors evokes a postsynaptic excitatory effect on FN neurons in a concentration-dependent manner in vitro, which is in accord with the 5-HT-elicited excitation on the same tested neurons. Furthermore, selective 5-HT2A receptor antagonist M100907 concentration-dependently blocks the excitatory effects of 5-HT and TCB-2, a 5-HT2A receptor agonist, on FN neurons. Consequently, microinjection of 5-HT into bilateral FNs significantly promotes rat motor performances on accelerating rota-rod and balance beam and narrows stride width rather than stride length in locomotion gait. All these motor behavioral effects are highly consistent with those of selective activation of 5-HT2A receptors in FNs, and blockage of the component of 5-HT2A receptor-mediated endogenous serotonergic inputs in FNs markedly attenuates these motor performances. All these results demonstrate that postsynaptic 5-HT2A receptors greatly contribute to the 5-HT-mediated excitatory effect on cerebellar FN neurons and promotion of the FN-related motor behaviors, suggesting that serotonergic afferent inputs may actively participate in cerebellar motor control through their direct modulation on the final output of the spinocerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aizenman CD, Huang EJ, Linden DJ (2003) Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. J Neurophysiol 89(4):1738–1747

    Article  PubMed  Google Scholar 

  2. Armstrong DL, Hay M, Terrian DM (1987) Modulation of cerebellar granule cell activity by iontophoretic application of serotonergic agents. Brain Res Bull 19(6):699–704

    Article  CAS  PubMed  Google Scholar 

  3. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38(8):1083–1152

    Article  CAS  PubMed  Google Scholar 

  4. Bidzinski A, Siemiatkowski M, Czlonkowska A, Tonderska A, Plaznik A (1998) The effect of serotonin depletion on motor activity habituation, and [3H]muscimol binding in the rat hippocampus. Eur J Pharmacol 353(1):5–12

    Article  CAS  PubMed  Google Scholar 

  5. Bishop GA, Ho RH, King JS (1988) A temporal analysis of the origin and distribution of serotoninergic afferents in the cerebellum of pouch young opossums. Anat Embryol (Berl) 179(1):33–48

    Article  CAS  Google Scholar 

  6. Bobker DH (1994) A slow excitatory postsynaptic potential mediated by 5-HT2 receptors in nucleus prepositus hypoglossi. J Neurosci 14(4):2428–2434

    CAS  PubMed  Google Scholar 

  7. Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58(1):167–182

    Article  CAS  PubMed  Google Scholar 

  8. Boyce-Rustay JM, Wiedholz LM, Millstein RA, Carroll J, Murphy DL, Daws LC, Holmes A (2006) Ethanol-related behaviors in serotonin transporter knockout mice. Alcohol Clin Exp Res 30(12):1957–1965

    Article  CAS  PubMed  Google Scholar 

  9. Bueno-Nava A, Gonzalez-Pina R, Alfaro-Rodriguez A, Nekrassov-Protasova V, Durand-Rivera A, Montes S, Ayala-Guerrero F (2010) Recovery of motor deficit, cerebellar serotonin and lipid peroxidation levels in the cortex of injured rats. Neurochem Res 35(10):1538–1545

    Article  CAS  PubMed  Google Scholar 

  10. Carratu MR, Borracci P, Coluccia A, Giustino A, Renna G, Tomasini MC, Raisi E, Antonelli T, Cuomo V, Mazzoni E, Ferraro L (2006) Acute exposure to methylmercury at two developmental windows: focus on neurobehavioral and neurochemical effects in rat offspring. Neuroscience 141(3):1619–1629

    Article  CAS  PubMed  Google Scholar 

  11. Chattopadhyay A (2007) Serotonin receptors in neurobiology. Frontiers in neuroscience, CRC, Boca Raton

    Book  Google Scholar 

  12. Cumming-Hood PA, Strahlendorf HK, Strahlendorf JC (1993) Effects of serotonin and the 5-HT2/1C receptor agonist DOI on neurons of the cerebellar dentate/interpositus nuclei: possible involvement of a GABAergic interneuron. Eur J Pharmacol 236(3):457–465

    Article  CAS  PubMed  Google Scholar 

  13. Di Mauro M, Fretto G, Caldera M, Li Volsi G, Licata F, Ciranna L, Santangelo F (2003) Noradrenaline and 5-hydroxytryptamine in cerebellar nuclei of the rat: functional effects on neuronal firing. Neurosci Lett 347(2):101–105

    Article  PubMed  Google Scholar 

  14. Dieudonne S, Dumoulin A (2000) Serotonin-driven long-range inhibitory connections in the cerebellar cortex. J Neurosci 20(5):1837–1848

    CAS  PubMed  Google Scholar 

  15. Dominguez-Lopez S, Howell R, Gobbi G (2012) Characterization of serotonin neurotransmission in knockout mice: implications for major depression. Rev Neurosci 23(4):429–443

    Article  CAS  PubMed  Google Scholar 

  16. Dutia MB, Johnston AR, McQueen DS (1992) Tonic activity of rat medial vestibular nucleus neurones in vitro and its inhibition by GABA. Exp Brain Res 88(3):466–472

    Article  CAS  PubMed  Google Scholar 

  17. Gardette R, Krupa M, Crepel F (1987) Differential effects of serotonin on the spontaneous discharge and on the excitatory amino acid-induced responses of deep cerebellar nuclei neurons in rat cerebellar slices. Neuroscience 23(2):491–500

    Article  CAS  PubMed  Google Scholar 

  18. Geurts FJ, De Schutter E, Timmermans JP (2002) Localization of 5-HT2A, 5-HT3, 5-HT5A and 5-HT7 receptor-like immunoreactivity in the rat cerebellum. J Chem Neuroanat 24(1):65–74

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, Sealfon SC, Gingrich JA (2007) Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuron 53(3):439–452

    Article  CAS  PubMed  Google Scholar 

  20. Halberstadt AL, Powell SB, Geyer MA (2013) Role of the 5-HT receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice. Neuropharmacology 70:218–227

    Article  CAS  PubMed  Google Scholar 

  21. Halberstadt AL, van der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, Powell SB (2009) 5-HT(2A) and 5-HT(2C) receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology 34(8):1958–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213

    Article  CAS  PubMed  Google Scholar 

  23. He YC, Wu GY, Li D, Tang B, Li B, Ding Y, Zhu JN, Wang JJ (2012) Histamine promotes rat motor performances by activation of H(2) receptors in the cerebellar fastigial nucleus. Behav Brain Res 228(1):44–52

    Article  CAS  PubMed  Google Scholar 

  24. Hirono M, Saitow F, Kudo M, Suzuki H, Yanagawa Y, Yamada M, Nagao S, Konishi S, Obata K (2012) Cerebellar globular cells receive monoaminergic excitation and monosynaptic inhibition from Purkinje cells. PLoS One 7(1):e29663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Holbrook JD, Gill CH, Zebda N, Spencer JP, Leyland R, Rance KH, Trinh H, Balmer G, Kelly FM, Yusaf SP, Courtenay N, Luck J, Rhodes A, Modha S, Moore SE, Sanger GJ, Gunthorpe MJ (2009) Characterisation of 5-HT3C, 5-HT3D and 5-HT3E receptor subunits: evolution, distribution and function. J Neurochem 108(2):384–396

    Article  CAS  PubMed  Google Scholar 

  26. Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  27. Kalueff AV, Jensen CL, Murphy DL (2007) Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res 1169:87–97

    Article  CAS  PubMed  Google Scholar 

  28. Kerr CW, Bishop GA (1991) Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex. J Comp Neurol 304(3):502–515

    Article  CAS  PubMed  Google Scholar 

  29. Kim JH, Wang JJ, Ebner TJ (1988) Alterations in simple spike activity and locomotor behavior associated with climbing fiber input to Purkinje cells in a decerebrate walking cat. Neuroscience 25(2):475–489

    Article  CAS  PubMed  Google Scholar 

  30. Kitzman PH, Bishop GA (1997) The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells: an in vivo study in the cat. Prog Brain Res 114:209–223

    Article  CAS  PubMed  Google Scholar 

  31. Llinás RR, Walton KD (1990) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 214–245

    Google Scholar 

  32. Loubinoux I, Tombari D, Pariente J, Gerdelat-Mas A, Franceries X, Cassol E, Rascol O, Pastor J, Chollet F (2005) Modulation of behavior and cortical motor activity in healthy subjects by a chronic administration of a serotonin enhancer. Neuroimage 27(2):299–313

    Article  PubMed  Google Scholar 

  33. Mehta H, Saravanan KS, Mohanakumar KP (2003) Serotonin synthesis inhibition in olivo-cerebellar system attenuates harmaline-induced tremor in Swiss albino mice. Behav Brain Res 145(1–2):31–36

    Article  CAS  PubMed  Google Scholar 

  34. Mendlin A, Martin FJ, Rueter LE, Jacobs BL (1996) Neuronal release of serotonin in the cerebellum of behaving rats: an in vivo microdialysis study. J Neurochem 67(2):617–622

    Article  CAS  PubMed  Google Scholar 

  35. Mori S, Matsui T, Kuze B, Asanome M, Nakajima K, Matsuyama K (1999) Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J Neurophysiol 82(1):290–300

    CAS  PubMed  Google Scholar 

  36. Munoz A, Carlsson T, Tronci E, Kirik D, Bjorklund A, Carta M (2009) Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT1A and 5-HT1B receptor agonists in the rat Parkinson model. Exp Neurol 219(1):298–307

    Article  CAS  PubMed  Google Scholar 

  37. Murano M, Saitow F, Suzuki H (2011) Modulatory effects of serotonin on glutamatergic synaptic transmission and long-term depression in the deep cerebellar nuclei. Neuroscience 172:118–128

    Article  CAS  PubMed  Google Scholar 

  38. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108(5):1614–1641

    Article  CAS  PubMed  Google Scholar 

  39. Parsey RV, Arango V, Olvet DM, Oquendo MA, Van Heertum RL, John Mann J (2005) Regional heterogeneity of 5-HT1A receptors in human cerebellum as assessed by positron emission tomography. J Cereb Blood Flow Metab 25(7):785–793

    Article  CAS  PubMed  Google Scholar 

  40. Pasqualetti M, Ori M, Nardi I, Castagna M, Cassano GB, Marazziti D (1998) Distribution of the 5-HT5A serotonin receptor mRNA in the human brain. Brain Res Mol Brain Res 56(1–2):1–8

    Article  CAS  PubMed  Google Scholar 

  41. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic/Elsevier, Amsterdam

    Google Scholar 

  42. Prinz A, Selesnew LM, Liss B, Roeper J, Carlsson T (2013) Increased excitability in serotonin neurons in the dorsal raphe nucleus in the 6-OHDA mouse model of Parkinson's disease. Exp Neurol 248C:236–245

    Article  Google Scholar 

  43. Pytliak M, Vargova V, Mechirova V, Felsoci M (2011) Serotonin receptors—from molecular biology to clinical applications. Physiol Res 60(1):15–25

    CAS  PubMed  Google Scholar 

  44. Saitow F, Hirono M, Suzuki H (2012) Serotonin and synaptic transmission in the cerebellum. In: Manto M, Gruol DL, Schmahmann JD, Koibuchi N, Rossi F (eds) Handbook of the cerebellum and cerebellar disorders, 1st edn. Springer, New York, pp 915–926

    Google Scholar 

  45. Saitow F, Murano M, Suzuki H (2009) Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol 101(3):1361–1374

    Article  CAS  PubMed  Google Scholar 

  46. Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Verge D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88(3):899–915

    Article  CAS  PubMed  Google Scholar 

  47. Schweighofer N, Doya K, Kuroda S (2004) Cerebellar aminergic neuromodulation: towards a functional understanding. Brain Res Brain Res Rev 44(2–3):103–116

    Article  PubMed  Google Scholar 

  48. Song YN, Li HZ, Zhu JN, Guo CL, Wang JJ (2006) Histamine improves rat rota-rod and balance beam performances through H(2) receptors in the cerebellar interpositus nucleus. Neuroscience 140(1):33–43

    Article  CAS  PubMed  Google Scholar 

  49. Stehle J (1991) Effects of histamine on spontaneous electrical activity of neurons in rat suprachiasmatic nucleus. Neurosci Lett 130(2):217–220

    Article  CAS  PubMed  Google Scholar 

  50. Strahlendorf JC, Strahlendorf HK, Lee M (1986) Enhancement of cerebellar Purkinje cell complex discharge activity by microiontophoretic serotonin. Exp Brain Res 61(3):614–624

    Article  CAS  PubMed  Google Scholar 

  51. Thornton EW, Goudie AJ (1978) Evidence for the role of serotonin in the inhibition of specific motor responses. Psychopharmacology (Berl) 60(1):73–79

    Article  CAS  Google Scholar 

  52. Trouillas P (1993) The cerebellar serotoninergic system and its possible involvement in cerebellar ataxia. Can J Neurol Sci 20(Suppl 3):S78–82

    PubMed  Google Scholar 

  53. Trouillas P, Brudon F, Adeleine P (1988) Improvement of cerebellar ataxia with levorotatory form of 5-hydroxytryptophan. A double-blind study with quantified data processing. Arch Neurol 45(11):1217–1222

    Article  CAS  PubMed  Google Scholar 

  54. Trouillas P, Xie J, Adeleine P (1996) Treatment of cerebellar ataxia with buspirone: a double-blind study. Lancet 348(9029):759

    Article  CAS  PubMed  Google Scholar 

  55. Trouillas P, Xie J, Adeleine P (1997) Buspirone, a serotonergic 5-HT1A agonist, is active in cerebellar ataxia. A new fact in favor of the serotonergic theory of ataxia. Prog Brain Res 114:589–599

    Article  CAS  PubMed  Google Scholar 

  56. Wang JJ, Kim JH, Ebner TJ (1987) Climbing fiber afferent modulation during a visually guided, multi-joint arm movement in the monkey. Brain Res 410(2):323–329

    Article  CAS  PubMed  Google Scholar 

  57. Zhang J, Li B, Yu L, He YC, Li HZ, Zhu JN, Wang JJ (2011) A role for orexin in central vestibular motor control. Neuron 69(4):793–804

    Article  CAS  PubMed  Google Scholar 

  58. Zhang XY, Yu L, Zhuang QX, Zhang J, Zhu JN, Wang JJ (2013) Hypothalamic histaminergic and orexinergic modulation on cerebellar and vestibular motor control. Cerebellum 12(3):294–296

    Article  CAS  PubMed  Google Scholar 

  59. Zhu JN, Yung WH, Kwok-Chong Chow B, Chan YS, Wang JJ (2006) The cerebellar–hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic–visceral integration. Brain Res Rev 52(1):93–106

    Article  PubMed  Google Scholar 

  60. Zhuang QX, Wu YH, Wu GY, Zhu JN, Wang JJ (2013) Histamine excites rat superior vestibular nuclear neurons via postsynaptic H1 and H2 receptors in vitro. Neurosignals 21(3–4):174–183

    Article  CAS  PubMed  Google Scholar 

  61. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21(2 Suppl):52S–60S

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by grants 31070959, 31071021, 31171050, 31330033, and 91332124 from the National Natural Science Foundation of China; RFDP grant 20100091110016 and NCET Program from the State Educational Ministry of China; grant BK2011014 from the Natural Science Foundation of Jiangsu Province, China; and grant 2013T60520 from China Postdoctoral Science Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Ning Zhu or Jian-Jun Wang.

Additional information

Chang-Zheng Zhang and Qian-Xing Zhuang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CZ., Zhuang, QX., He, YC. et al. 5-HT2A receptor-mediated excitation on cerebellar fastigial nucleus neurons and promotion of motor behaviors in rats. Pflugers Arch - Eur J Physiol 466, 1259–1271 (2014). https://doi.org/10.1007/s00424-013-1378-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1378-x

Keywords

Navigation