Skip to main content

Advertisement

Log in

Sex differences in exercise-induced cardiac hypertrophy

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Physiological cardiac hypertrophy (PCH), induced by intensive exercise or pregnancy, differs substantially from the pathological form of myocardial hypertrophy, accruing after aortic stenosis or chronic arterial hypertension. In contrast to pathological forms of cardiac hypertrophy, exercise-induced increase of left ventricular mass is related to cardiac myocytes enlargement, with no apparent sign of fibrosis or apoptosis, and does usually not result in cardiac failure. Recently published results obtained from various animal studies documented clear sex-specific regulation of exercise-induced cardiac hypertrophy in rodents, with a pronounced hypertrophic response to training load observed in female animals when compared to male littermate. In addition to increased cardiac hypertrophic response, females exhibited augmented lipolytic activity measured in adipose tissue in response to exercise, resulting in increased plasma free fatty acid levels, measured after training. Importantly, sex-specific differences in adipose tissue lipolysis and systemic fat metabolism induced by intensive training were also confirmed in human studies, performed on athletes and healthy volunteers. Since development of PCH during the physical training is accompanied by enhanced fatty acid oxidation and reduced glucose uptake, intensive lipolytic activity, measured in female adipose tissue could explain, at least in part, sex-specific differences observed in hypertrophic response to exercising. Given that sex hormones, such as estrogens and testosterone, in addition to their role in the regulation of adipose tissue metabolism, were also reported to modulate development of pathological myocardial hypertrophy, one may expect also a putative contribution of sex hormones in processes regulating the development and progression of PCH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Antos CL, McKinsey TA, Frey N, Kutschke W, McAnally J, Shelton JM, Richardson JA, Hill JA, Olson EN (2002) Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A 99(2):907–912. doi:10.1073/pnas.231619298

    Article  PubMed  CAS  Google Scholar 

  2. Barretti DL, de FC M, Fernandes T, de Carmo EC, Rosa KT, Irigoyen MC, Negrao CE, Oliveira EM (2012) Effects of aerobic exercise training on cardiac renin-angiotensin system in an obese Zucker rat strain. PLoS One 7(10):e46114. doi:10.1371/journal.pone.0046114

    Article  PubMed  CAS  Google Scholar 

  3. Benz V, Bloch M, Wardat S, Bohm C, Maurer L, Mahmoodzadeh S, Wiedmer P, Spranger J, Foryst-Ludwig A, Kintscher U (2012) Sexual dimorphic regulation of body weight dynamics and adipose tissue lipolysis. PLoS One 7(5):e37794. doi:10.1371/journal.pone.0037794

    Article  PubMed  CAS  Google Scholar 

  4. Berggren JR, Boyle KE, Chapman WH, Houmard JA (2008) Skeletal muscle lipid oxidation and obesity: influence of weight loss and exercise. Am J Physiol Endocrinol Metab 294(4):E726–E732. doi:10.1152/ajpendo.00354.2007

    Article  PubMed  CAS  Google Scholar 

  5. Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227. doi:10.1016/j.pharmthera.2010.04.005

    Article  PubMed  CAS  Google Scholar 

  6. Brown DA, Lynch JM, Armstrong CJ, Caruso NM, Ehlers LB, Johnson MS, Moore RL (2005) Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. J Physiol 564(Pt 2):619–630. doi:10.1113/jphysiol.2004.081323

    Article  PubMed  CAS  Google Scholar 

  7. Bupha-Intr T, Laosiripisan J, Wattanapermpool J (2009) Moderate intensity of regular exercise improves cardiac SR Ca2+ uptake activity in ovariectomized rats. J Appl Physiol 107(4):1105–1112. doi:10.1152/japplphysiol.00407.2009

    Article  PubMed  CAS  Google Scholar 

  8. Carroll JF, Kyser CK (2002) Exercise training in obesity lowers blood pressure independent of weight change. Med Sci Sports Exerc 34(4):596–601

    Article  PubMed  Google Scholar 

  9. De Bono JP, Adlam D, Paterson DJ, Channon KM (2006) Novel quantitative phenotypes of exercise training in mouse models. Am J Physiol Regul Integr Comp Physiol 290(4):R926–R934. doi:10.1152/ajpregu.00694.2005

    Article  PubMed  Google Scholar 

  10. DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ (2006) Akt1 is required for physiological cardiac growth. Circulation 113(17):2097–2104. doi:10.1161/CIRCULATIONAHA.105.595231

    Article  PubMed  CAS  Google Scholar 

  11. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116(3):561–570. doi:10.1172/JCI27987

    Article  PubMed  CAS  Google Scholar 

  12. Dicker A, Ryden M, Naslund E, Muehlen IE, Wiren M, Lafontan M, Arner P (2004) Effect of testosterone on lipolysis in human pre-adipocytes from different fat depots. Diabetologia 47(3):420–428. doi:10.1007/s00125-003-1324-0

    Article  PubMed  CAS  Google Scholar 

  13. Dorn GW 2nd (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49(5):962–970. doi:10.1161/HYPERTENSIONAHA.106.079426

    Article  PubMed  CAS  Google Scholar 

  14. Ennis IL, Escudero EM, Console GM, Camihort G, Dumm CG, Seidler RW, Camilion de Hurtado MC, Cingolani HE (2003) Regression of isoproterenol-induced cardiac hypertrophy by Na+/H + exchanger inhibition. Hypertension 41(6):1324–1329. doi:10.1161/01.HYP.0000071180.12012.6E

    Article  PubMed  CAS  Google Scholar 

  15. Foryst-Ludwig A, Kreissl MC, Sprang C, Thalke B, Bohm C, Benz V, Gurgen D, Dragun D, Schubert C, Mai K, Stawowy P, Spranger J, Regitz-Zagrosek V, Unger T, Kintscher U (2011) Sex differences in physiological cardiac hypertrophy are associated with exercise-mediated changes in energy substrate availability. Am J Physiol Heart Circ Physiol 301(1):H115–H122. doi:10.1152/ajpheart.01222.2010

    Article  PubMed  CAS  Google Scholar 

  16. Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279(4):H1490–H1501

    PubMed  CAS  Google Scholar 

  17. Haines CD, Harvey PA, Leinwand LA (2012) Estrogens mediate cardiac hypertrophy in a stimulus-dependent manner. Endocrinology 153(9):4480–4490. doi:10.1210/en.2012-1353

    Article  PubMed  CAS  Google Scholar 

  18. Hansen FM, Fahmy N, Nielsen JH (1980) The influence of sexual hormones on lipogenesis and lipolysis in rat fat cells. Acta Endocrinol (Copenh) 95(4):566–570

    CAS  Google Scholar 

  19. Haykowsky MJ (2011) Left ventricular remodelling and the athlete's heart: time to revisit the Morganroth hypothesis. J Physiol 589(Pt 24):5915. doi:10.1113/jphysiol.2011.221903

    Article  PubMed  CAS  Google Scholar 

  20. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS (2000) Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A 97(23):12729–12734. doi:10.1073/pnas.97.23.12729

    Article  PubMed  CAS  Google Scholar 

  21. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600. doi:10.1038/nrm1983

    Article  PubMed  CAS  Google Scholar 

  22. Homma H, Kurachi H, Nishio Y, Takeda T, Yamamoto T, Adachi K, Morishige K, Ohmichi M, Matsuzawa Y, Murata Y (2000) Estrogen suppresses transcription of lipoprotein lipase gene. Existence of a unique estrogen response element on the lipoprotein lipase promoter. J Biol Chem 275(15):11404–11411

    Article  PubMed  CAS  Google Scholar 

  23. Horton TJ, Dow S, Armstrong M, Donahoo WT (2009) Greater systemic lipolysis in women compared with men during moderate-dose infusion of epinephrine and/or norepinephrine. J Appl Physiol 107(1):200–210. doi:10.1152/japplphysiol.90812.2008

    Article  PubMed  CAS  Google Scholar 

  24. Konhilas JP (2010) What we know and do not know about sex and cardiac disease. J Biomed Biotechnol 2010:562051. doi:10.1155/2010/562051

    Article  PubMed  Google Scholar 

  25. Konhilas JP, Maass AH, Luckey SW, Stauffer BL, Olson EN, Leinwand LA (2004) Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol 287(6):H2768–H2776. doi:10.1152/ajpheart.00292.2004

    Article  PubMed  CAS  Google Scholar 

  26. Konhilas JP, Watson PA, Maass A, Boucek DM, Horn T, Stauffer BL, Luckey SW, Rosenberg P, Leinwand LA (2006) Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ Res 98(4):540–548. doi:10.1161/01.RES.0000205766.97556.00

    Article  PubMed  CAS  Google Scholar 

  27. Luczak ED, Leinwand LA (2009) Sex-based cardiac physiology. Annu Rev Physiol 71:1–18. doi:10.1146/annurev.physiol.010908.163156

    Article  PubMed  CAS  Google Scholar 

  28. Mahmoodzadeh S, Eder S, Nordmeyer J, Ehler E, Huber O, Martus P, Weiske J, Pregla R, Hetzer R, Regitz-Zagrosek V (2006) Estrogen receptor alpha up-regulation and redistribution in human heart failure. FASEB J 20(7):926–934. doi:10.1096/fj.05-5148com

    Article  PubMed  CAS  Google Scholar 

  29. Malhotra A, Buttrick P, Scheuer J (1990) Effects of sex hormones on development of physiological and pathological cardiac hypertrophy in male and female rats. Am J Physiol 259(3 Pt 2):H866–H871

    PubMed  CAS  Google Scholar 

  30. Mittendorfer B, Horowitz JF, Klein S (2002) Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Am J Physiol Endocrinol Metab 283(1):E58–E65. doi:10.1152/ajpendo.00504.2001

    PubMed  CAS  Google Scholar 

  31. Nordmeyer J, Eder S, Mahmoodzadeh S, Martus P, Fielitz J, Bass J, Bethke N, Zurbrugg HR, Pregla R, Hetzer R, Regitz-Zagrosek V (2004) Upregulation of myocardial estrogen receptors in human aortic stenosis. Circulation 110(20):3270–3275. doi:10.1161/01.CIR.0000147610.41984.E8

    Article  PubMed  CAS  Google Scholar 

  32. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105(10):1395–1406. doi:10.1172/JCI8551

    Article  PubMed  CAS  Google Scholar 

  33. Pereira MG, Ferreira JC, Bueno CR Jr, Mattos KC, Rosa KT, Irigoyen MC, Oliveira EM, Krieger JE, Brum PC (2009) Exercise training reduces cardiac angiotensin II levels and prevents cardiac dysfunction in a genetic model of sympathetic hyperactivity-induced heart failure in mice. Eur J Appl Physiol 105(6):843–850. doi:10.1007/s00421-008-0967-4

    Article  PubMed  CAS  Google Scholar 

  34. Petersen SE, Wiesmann F, Hudsmith LE, Robson MD, Francis JM, Selvanayagam JB, Neubauer S, Channon KM (2006) Functional and structural vascular remodeling in elite rowers assessed by cardiovascular magnetic resonance. J Am Coll Cardiol 48(4):790–797. doi:10.1016/j.jacc.2006.04.078

    Article  PubMed  Google Scholar 

  35. Riquelme CA, Magida JA, Harrison BC, Wall CE, Marr TG, Secor SM, Leinwand LA (2011) Fatty acids identified in the Burmese python promote beneficial cardiac growth. Science 334(6055):528–531. doi:10.1126/science.1210558

    Article  PubMed  CAS  Google Scholar 

  36. Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, Aneas I, Negrao CE, Krieger JE, Oliveira EM (2007) Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol 293(6):H3575–H3583. doi:10.1152/ajpheart.01251.2006

    Article  PubMed  CAS  Google Scholar 

  37. Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women's Health Initiative randomized controlled trial. JAMA 288(3):321–333

    Article  PubMed  CAS  Google Scholar 

  38. Schaible TF, Scheuer J (1979) Effects of physical training by running or swimming on ventricular performance of rat hearts. J Appl Physiol 46(4):854–860

    PubMed  CAS  Google Scholar 

  39. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athlete's heart: right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40(10):1856–1863

    Article  PubMed  Google Scholar 

  40. Soto PF, Herrero P, Schechtman KB, Waggoner AD, Baumstark JM, Ehsani AA, Gropler RJ (2008) Exercise training impacts the myocardial metabolism of older individuals in a gender-specific manner. Am J Physiol Heart Circ Physiol 295(2):H842–H850. doi:10.1152/ajpheart.91426.2007

    Article  PubMed  CAS  Google Scholar 

  41. Stubbins RE, Holcomb VB, Hong J, Nunez NP (2012) Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur J Nutr 51(7):861–870. doi:10.1007/s00394-011-0266-4

    Article  PubMed  CAS  Google Scholar 

  42. Toth MJ, Tchernof A, Sites CK, Poehlman ET (2000) Menopause-related changes in body fat distribution. Ann N Y Acad Sci 904:502–506

    Article  PubMed  CAS  Google Scholar 

  43. Vanier HV, Mraiche F, Li X, Fliegel L (2012) Gender-specific effects of exercise on cardiac pathology in Na(+)/H(+) exchanger overexpressing mice. Mol Cell Biochem 368(1–2):103–110. doi:10.1007/s11010-012-1348-1

    Article  PubMed  CAS  Google Scholar 

  44. Weiner RB, Baggish AL (2012) Exercise-induced cardiac remodeling. Prog Cardiovasc Dis 54(5):380–386. doi:10.1016/j.pcad.2012.01.006

    Article  PubMed  Google Scholar 

  45. Xu Y, Arenas IA, Armstrong SJ, Davidge ST (2003) Estrogen modulation of left ventricular remodeling in the aged heart. Cardiovasc Res 57(2):388–394

    Article  PubMed  CAS  Google Scholar 

  46. Yokoyama H, Gunasegaram S, Harding SE, Avkiran M (2000) Sarcolemmal Na+/H + exchanger activity and expression in human ventricular myocardium. J Am Coll Cardiol 36(2):534–540

    Article  PubMed  CAS  Google Scholar 

  47. Zechner R, Strauss JG, Haemmerle G, Lass A, Zimmermann R (2005) Lipolysis: pathway under construction. Curr Opin Lipidol 16(3):333–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Deutsche Forschungsgemeinschaft (DFG) Grants FG 1054/2 and KFO 218/2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Kintscher.

Additional information

This article is published as part of the Special Issue on “Sex differences in health and disease: brain and heart connections.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foryst-Ludwig, A., Kintscher, U. Sex differences in exercise-induced cardiac hypertrophy. Pflugers Arch - Eur J Physiol 465, 731–737 (2013). https://doi.org/10.1007/s00424-013-1225-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1225-0

Keywords

Navigation