Skip to main content

Advertisement

Log in

Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The Na+/H+ exchanger isoform 3 (NHE3) is essential for HCO 3 reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid–base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO 3 concentration in the cell culture medium and respiratory acidosis by increasing CO2 tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between −466 and −153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adam WR, Koretsky AP, Weiner MW (1986) 31P-NMR in vivo measurement of renal intracellular pH: effects of acidosis and K+ depletion in rats. Am J Physiol 251:904–910

    Google Scholar 

  2. Adrogue HJ, Madias NE (2010) Secondary responses to altered acid-base status: the rules of engagement. J Am Soc Nephrol 21:920–923

    Article  PubMed  CAS  Google Scholar 

  3. Ambuhl PM, Amemiya M, Danczkay M, Lotscher M, Kaissling B, Moe OW, Preisig PA, Alpern RJ (1996) Chronic metabolic acidosis increases NHE3 protein abundance in rat kidney. Am J Physiol 271:917–925

    Google Scholar 

  4. Amemiya M, Yamaji Y, Cano A, Moe OW, Alpern RJ (1995) Acid incubation increases NHE-3 mRNA abundance in OKP cells. Am J Physiol 269:126–133

    Google Scholar 

  5. Amin MR, Malakooti J, Sandoval R, Dudeja PK, Ramaswamy K (2006) IFN-gamma and TNF-alpha regulate human NHE3 gene expression by modulating the Sp family transcription factors in human intestinal epithelial cell line C2BBe1. Am J Physiol Cell Physiol 291:887–896

    Article  Google Scholar 

  6. Bernardo AA, Bernardo CM, Espiritu DJ, Arruda JA (2006) The sodium bicarbonate cotransporter: structure, function, and regulation. Semin Nephrol 26:352–360

    Article  PubMed  CAS  Google Scholar 

  7. Bezerra CN, Girardi AC, Carraro-Lacroix LR, Reboucas NA (2008) Mechanisms underlying the long-term regulation of NHE3 by parathyroid hormone. Am J Physiol Renal Physiol 294:1232–1237

    Article  Google Scholar 

  8. Biemesderfer D, DeGray B, Aronson PS (2001) Active (9.6 s) and inactive (21 s) oligomers of NHE3 in microdomains of the renal brush border. J Biol Chem 276:10161–10167

    Article  PubMed  CAS  Google Scholar 

  9. Bobulescu IA, Moe OW (2006) Na+/H+ exchangers in renal regulation of acid–base balance. Semin Nephrol 26:334–344

    Article  PubMed  CAS  Google Scholar 

  10. Boron WF (2006) Acid–base transport by the renal proximal tubule. J Am Soc Nephrol 17:2368–2382

    Article  PubMed  CAS  Google Scholar 

  11. Cano A (1996) Characterization of the rat NHE3 promoter. Am J Physiol 271:629–636

    Google Scholar 

  12. Charney AN, Egnor RW, Cassai N, Sidhu GS (2002) Carbon dioxide affects rat colonic Na+ absorption by modulating vesicular traffic. Gastroenterology 122:318–330

    Article  PubMed  CAS  Google Scholar 

  13. Chiu HM, Lin HH, Tang MJ (1998) Ethyl isopropylamiloride downregulates Na, K-ATPase gene expression which confers cytotoxicity in primary proximal tubule cell cultures. Chin J Physiol 41:195–202

    PubMed  CAS  Google Scholar 

  14. Cogan MG (1984) Chronic hypercapnia stimulates proximal bicarbonate reabsorption in the rat. J Clin Invest 74:1942–1947

    Article  PubMed  CAS  Google Scholar 

  15. Cohn DE, Klahr S, Hammerman MR (1983) Metabolic acidosis and parathyroidectomy increase Na+-H+ exchange in brush border vesicles. Am J Physiol 245:217–222

    Google Scholar 

  16. de Seigneux S, Malte H, Dimke H, Frokiaer J, Nielsen S, Frische S (2007) Renal compensation to chronic hypoxic hypercapnia: downregulation of pendrin and adaptation of the proximal tubule. Am J Physiol Renal Physiol 292:1256–1266

    Article  Google Scholar 

  17. de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7:725–737

    PubMed  Google Scholar 

  18. du Cheyron D, Chalumeau C, Defontaine N, Klein C, Kellermann O, Paillard M, Poggioli J (2003) Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int 64:939–949

    Article  PubMed  Google Scholar 

  19. He P, Zhang H, Yun CC (2008) IRBIT, inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3, binds Na+/H+ exchanger NHE3 and activates NHE3 activity in response to calcium. J Biol Chem 283:33544–33553

    Article  PubMed  CAS  Google Scholar 

  20. Horie S, Moe O, Tejedor A, Alpern RJ (1990) Preincubation in acid medium increases Na/H antiporter activity in cultured renal proximal tubule cells. Proc Natl Acad Sci USA 87:4742–4745

    Article  PubMed  CAS  Google Scholar 

  21. Horie S, Moe O, Yamaji Y, Cano A, Miller RT, Alpern RJ (1992) Role of protein kinase C and transcription factor AP-1 in the acid-induced increase in Na/H antiporter activity. Proc Natl Acad Sci USA 89:5236–5240

    Article  PubMed  CAS  Google Scholar 

  22. Igarashi P, Freed MI, Ganz MB, Reilly RF (1992) Effects of chronic metabolic acidosis on Na(+)-H+ exchangers in LLC-PK1 renal epithelial cells. Am J Physiol 263:83–88

    Google Scholar 

  23. Kandasamy RA, Orlowski J (1996) Genomic organization and glucocorticoid transcriptional activation of the rat Na+/H+ exchanger Nhe3 gene. J Biol Chem 271:10551–10559

    Article  PubMed  CAS  Google Scholar 

  24. Kinsella J, Cujdik T, Sacktor B (1984) Na+-H+ exchange in isolated renal brush-border membrane vesicles in response to metabolic acidosis. Kinetic effects. J Biol Chem 259:13224–13227

    PubMed  CAS  Google Scholar 

  25. Krapf R (1989) Mechanisms of adaptation to chronic respiratory acidosis in the rabbit proximal tubule. J Clin Invest 83:890–896

    Article  PubMed  CAS  Google Scholar 

  26. Krapf R, Pearce D, Lynch C, Xi XP, Reudelhuber TL, Pouyssegur J, Rector FC Jr (1991) Expression of rat renal Na/H antiporter mRNA levels in response to respiratory and metabolic acidosis. J Clin Invest 87:747–751

    Article  PubMed  CAS  Google Scholar 

  27. Langberg H, Mathisen O, Holdaas H, Kiil F (1981) Filtered bicarbonate and plasma pH as determinants of renal bicarbonate reabsorption. Kidney Int 20:780–788

    Article  PubMed  CAS  Google Scholar 

  28. Laterza OF, Hansen WR, Taylor L, Curthoys NP (1997) Identification of an mRNA-binding protein and the specific elements that may mediate the pH-responsive induction of renal glutaminase mRNA. J Biol Chem 272:22481–22488

    Article  PubMed  CAS  Google Scholar 

  29. Li S, Sato S, Yang X, Preisig PA, Alpern RJ (2004) Pyk2 activation is integral to acid stimulation of sodium/hydrogen exchanger 3. J Clin Invest 114:1782–1789

    PubMed  CAS  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  31. Malakooti J, Memark VC, Dudeja PK, Ramaswamy K (2002) Molecular cloning and functional analysis of the human Na(+)/H(+) exchanger NHE3 promoter. Am J Physiol Gastrointest Liver Physiol 282:491–500

    Google Scholar 

  32. Moe OW, Miller RT, Horie S, Cano A, Preisig PA, Alpern RJ (1991) Differential regulation of Na/H antiporter by acid in renal epithelial cells and fibroblasts. J Clin Invest 88:1703–1708

    Article  PubMed  CAS  Google Scholar 

  33. Neri EA, Bezerra CN, Reboucas NA (2011) Essential regulatory elements for NHE3 gene transcription in renal proximal tubule cells. Braz J Med Biol Res 44:514–523

    Article  PubMed  CAS  Google Scholar 

  34. Pahlavan P, Wang LJ, Sack E, Arruda JA (1993) Role of protein kinase C in the adaptive increase in Na-H antiporter in respiratory acidosis. J Am Soc Nephrol 4:1079–1086

    PubMed  CAS  Google Scholar 

  35. Preisig PA (2007) The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3 activity. Kidney Int 72:1324–1329

    Article  PubMed  CAS  Google Scholar 

  36. R Development Core Team (2011) R: A Language and Environment for Statistical Computing

  37. Ruiz OS, Arruda JA, Talor Z (1989) Na-HCO3 cotransport and Na-H antiporter in chronic respiratory acidosis and alkalosis. Am J Physiol 256:414–420

    Google Scholar 

  38. Santella RN, Maddox DA, Gennari FJ (1991) Delivery dependence of early proximal bicarbonate reabsorption in the rat in respiratory acidosis and alkalosis. J Clin Invest 87:631–638

    Article  PubMed  CAS  Google Scholar 

  39. Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, Petrovic S (2010) Deletion of the pH sensor GPR4 decreases renal acid excretion. J Am Soc Nephrol 21:1745–1755

    Article  PubMed  CAS  Google Scholar 

  40. Tresguerres M, Buck J, Levin LR (2010) Physiological carbon dioxide, bicarbonate, and pH sensing. Pflugers Arch 460:953–964

    Article  PubMed  CAS  Google Scholar 

  41. Tsai CJ, Ives HE, Alpern RJ, Yee VJ, Warnock DG, Rector FC Jr (1984) Increased Vmax for Na+/H+ antiporter activity in proximal tubule brush border vesicles from rabbits with metabolic acidosis. Am J Physiol 247:339–343

    Google Scholar 

  42. Valles P, Lapointe MS, Wysocki J, Batlle D (2006) Kidney vacuolar H+-ATPase: physiology and regulation. Semin Nephrol 26:361–374

    Article  PubMed  CAS  Google Scholar 

  43. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    Article  PubMed  CAS  Google Scholar 

  44. Wu MS, Biemesderfer D, Giebisch G, Aronson PS (1996) Role of NHE3 in mediating renal brush border Na+-H+ exchange. Adaptation to metabolic acidosis. J Biol Chem 271:32749–32752

    Article  PubMed  CAS  Google Scholar 

  45. Yamaji Y, Moe OW, Miller RT, Alpern RJ (1994) Acid activation of immediate early genes in renal epithelial cells. J Clin Invest 94:1297–1303

    Article  PubMed  CAS  Google Scholar 

  46. Yang X, Amemiya M, Peng Y, Moe OW, Preisig PA, Alpern RJ (2000) Acid incubation causes exocytic insertion of NHE3 in OKP cells. Am J Physiol Cell Physiol 279:410–419

    Google Scholar 

  47. Zeidel ML, Seifter JL (1988) Regulation of Na/H exchange in renal microvillus vesicles in chronic hypercapnia. Kidney Int 34:60–66

    Article  PubMed  CAS  Google Scholar 

  48. Zhou Y, Zhao J, Bouyer P, Boron WF (2005) Evidence from renal proximal tubules that HCO3 and solute reabsorption are acutely regulated not by pH but by basolateral HCO3 and CO2. Proc Natl Acad Sci USA 102:3875–3880

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, National Council for Scientific and Technological Development) and by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo Research Foundation). We wish to thank Camila Nogueira Alves Bezerra for the technical assistance provided. We are also grateful to Gustavo Burin Ferreira and Dr Paulo Inácio de Knegt López de Prado for their assistance with the R programming language and deviance test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Amaral Rebouças.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

PDF 161 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, P.H.I., Girardi, A.C.C., Neri, E.A. et al. Distinct mechanisms underlie adaptation of proximal tubule Na+/H+ exchanger isoform 3 in response to chronic metabolic and respiratory acidosis. Pflugers Arch - Eur J Physiol 463, 703–714 (2012). https://doi.org/10.1007/s00424-012-1092-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1092-0

Keywords

Navigation