Skip to main content
Log in

Influence of methanandamide and CGRP on potassium currents in smooth muscle cells of small mesenteric arteries

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cannabinoids have potent vasodilatory actions in a variety of vascular preparations. Their mechanism of action, however, is complex. Apart from acting on vascular smooth muscle or endothelial cannabinoid receptors, several studies point to the activation of type 1 vanilloid (TRPV1) receptors on primary afferent perivascular nerves, stimulating the release of calcitonin gene-related peptide (CGRP). In the present study, the direct influence of the cannabinoid methanandamide and the neuropeptide CGRP on the membrane potassium ion (K+) currents of rat mesenteric myocytes was explored. Methanandamide (10 μM) decreased outward K+ currents, an effect similar to that observed in smooth muscle cells from the rat aorta. Conversely, CGRP (10 nM) significantly increased whole-cell K+ currents and this effect was abolished by preexposure to tetraethylammonium chloride (1 mM) or iberiotoxin (100 nM), inhibitors of large-conductance calcium-dependent K (BKCa) channels but not by glibenclamide (10 μM), an inhibitor of ATP-dependent K channels. In the presence of the CGRP receptor antagonist CGRP8-37 (100 nM), the adenylyl cyclase inhibitor SQ22536 (100 μM), or the protein kinase A inhibitor Rp-cAMPS (10 μM), CGRP had no effect. These findings show that methanandamide does not increase membrane K+ currents in smooth muscle cells of small mesenteric arteries, supporting an indirect mechanism for the reported hyperpolarizing influence in this vessel. Moreover, CGRP acts directly on these smooth muscle cells by increasing BKCa channel activity in a CGRP receptor and cyclic adenosine monophosphate-dependent way. Collectively, these data indicate that methanandamide relaxes and hyperpolarizes intact mesenteric vessels by releasing CGRP from perivascular nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boussery K, Delaey C, Van de Voorde J (2005) The vasorelaxing effect of CGRP and natriuretic peptides in isolated bovine retinal arteries. Invest Ophth Vis Sci 46(4):1420–1427

    Article  Google Scholar 

  2. Breyne J, Van de Voorde J, Vanheel B (2006) Characterization of the vasorelaxation to methanandamide in rat gastric arteries. Can J Physiol Pharmacol 84(11):1121–1132

    Article  PubMed  CAS  Google Scholar 

  3. Breyne J, Vanheel B (2006) Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol 47(2):303–309

    Article  PubMed  CAS  Google Scholar 

  4. Ellis JL, Conanan ND (1995) Modulation of relaxant responses evoked by a nitric-oxide donor and by nonadrenergic, noncholinergic stimulation by isozyme-selective phosphodiesterase inhibitors in guinea-pig trachea. J Pharmacol Exp Ther 272(3):997–1004

    PubMed  CAS  Google Scholar 

  5. Fan P (1995) Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. J Neurophysiol 73(2):907–910

    PubMed  CAS  Google Scholar 

  6. Fleming I, Schermer B, Popp R, Busse R (1999) Inhibition of the production of endothelium-derived hyperpolarizing factor by cannabinoid receptor agonists. Br J Pharmacol 126(4):949–960

    Article  PubMed  CAS  Google Scholar 

  7. Gao YJ, Nishimura Y, Suzuki A, Nakai Y (1996) Calcitonin gene-related peptide-induced relaxation in isolated small superior mesenteric arteries from adult stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 23:625–631

    Article  Google Scholar 

  8. Gebremedhin D, Lange AR, Campbell WB, Hillard CJ, Harder DR (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol Heart Circ Physiol 276(6):H2085–H2093

    CAS  Google Scholar 

  9. Gray DW, Marshall I (1992) Nitric-oxide synthesis inhibitors attenuate calcitonin gene-related peptide endothelium-dependent vasorelaxation in rat aorta. Eur J Pharmacol 212(1):37–42

    Article  PubMed  CAS  Google Scholar 

  10. Hampson AJ, Bornheim LM, Scanziani M, Yost CS, Gray AT, Hansen BM, Leonoudakis DJ, Bickler PE (1998) Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 70(2):671–676

    Article  PubMed  CAS  Google Scholar 

  11. Herzog M, Scherer EQ, Albrecht B, Rorabaugh B, Scofield MA, Wangemann P (2002) CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMP-mediated Ca2+-decrease. J Membr Biol 189(3):225–236

    Article  PubMed  CAS  Google Scholar 

  12. Hong KW, Yoo SE, Yu SS, Lee JY, Rhim BY (1996) Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am J Physiol Heart Circ Physiol 39(1):H317–H323

    Google Scholar 

  13. Ishikawa M, Ouchi Y, Orimo H (1993) Effect of calcitonin-gene-related peptide on cytosolic-free Ca2+ level in vascular smooth-muscle. Eur J Pharmacol 246(2):121–128

    Article  PubMed  CAS  Google Scholar 

  14. Kageyama M, Yanagisawa T, Taira N (1993) Calcitonin gene-related peptide relaxes porcine coronary-arteries via cyclic AMP-dependent mechanisms, but not activation of ATP-sensitive potassium channels. J Pharmacol Exp Ther 265(2):490–497

    PubMed  CAS  Google Scholar 

  15. Langton PD, Nelson MT, Huang Y, Standen NB (1991) Block of calcium-activated potassium channels in mammalian arterial myocytes by tetraethylammonium ions. Am J Physiol Heart Circ Physiol 260:H927–H934

    CAS  Google Scholar 

  16. Minami K, Fukuzawa K, Nakaya Y, Zeng XR, Inoue I (1993) Mechanism of activation of the Ca2+-activated K+ channel by cyclic AMP in cultured porcine coronary artery smooth muscle cells. Life Sci 53(14):1129–1135

    Article  PubMed  CAS  Google Scholar 

  17. Nelson MT, Quayle JM (1995) Physiological roles and properties of potassium channels on arterial smooth muscle. Am J Physiol - Cell Physiol 268:C799–C822

    CAS  Google Scholar 

  18. Nelson MT, Huang Y, Brayden JE, Hescheler J, Standen NB (1990) Arterial dilations in response to calcitonin gene-related peptide involve action of K+ channels. Nature 344:770–776

    Article  PubMed  CAS  Google Scholar 

  19. O'Sullivan SE, Kendall DA, Randall MD (2004) Heterogeneity in the mechanisms of vasorelaxation to anandamide in resistance and conduit rat mesenteric arteries. Br J Pharmacol 142(3):435–442

    Article  PubMed  Google Scholar 

  20. O'Sullivan SE, Kendall DA, Randall MD (2005) Novel time-dependent vascular actions of delta(9)-tetrahydrocannabinol (THC) mediated by peroxisome proliferator-activated receptor gamma (PPARγ). Biochem Biophys Res Commun 337(3):824–831

    Article  PubMed  Google Scholar 

  21. Pratt PF, Hillard CJ, Edgemond WS, Campbell WB (1998) N-arachidonylethanolamide relaxation of bovine coronary artery is not mediated by CB1 cannabinoid receptor. Am J Physiol Heart Circ Physiol 43(1):H375–H381

    Google Scholar 

  22. Prieto D, Benedito S, Nyborg NCB (1991) Heterogeneous involvement of endothelium in calcitonin gene-related peptide-induced relaxation in coronary-arteries from rat. Br J Pharmacol 103(3):1764–1768

    PubMed  CAS  Google Scholar 

  23. Quayle JM, BonevAD BJE, Nelson MT (1994) Calcitonin-gene-related peptide activated ATP-sensitive K+ currents in rabbit arterial smooth-muscle via protein-kinase-A. J Physiol Lond 475(1):9–13

    PubMed  CAS  Google Scholar 

  24. Ralevic V, Kendall DA, Randall MD, Movahed P, Hogestatt ED (2000) Vanilloid receptors on capsaicin-sensitive sensory nerves mediate relaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arteries. Br J Pharmacol 130(7):1483–1488

    Article  PubMed  CAS  Google Scholar 

  25. Randall MD, Kendall DA (1997) Involvement of a cannabinoid in endothelium-derived hyperpolarizing factor-mediated coronary vasorelaxation. Eur J Pharmacol 335:205–209

    Article  PubMed  CAS  Google Scholar 

  26. Sade H, Muraki K, Ohya S et al (2006) Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am J Physiol Cell Physiol 290(1):C77–C86

    Article  PubMed  CAS  Google Scholar 

  27. Sadoshima J, Akaike N, Tomoike H, Kanaide H, Nakamura M (1988) Ca-activated K-channel in cultured smooth muscle cells of rat aortic media. Am J Physiol 255(3):H410–417

    PubMed  CAS  Google Scholar 

  28. Schubert R, Nelson MT (2001) Protein kinases: tuners of the BKCa channel in smooth muscle. Tr Pharmacol Sci 22(10):505–512

    Article  CAS  Google Scholar 

  29. Schubert R, Serebryakov VN, Engel H, Hopp HH (1996) Iloprost activates K-Ca channels of vascular smooth muscle cells: Role of cAMP-dependent protein kinase. Am J Physiol Cell Physiol 40(4):C1203–C1211

    Google Scholar 

  30. Sheykhzade M, Nyborg NCB (2001) Mechanism of CGRP-induced relaxation in rat intramural coronary arteries. Br J Pharmacol 132(6):1235–1246

    Article  PubMed  CAS  Google Scholar 

  31. Takenaga M, Kawasaki H, Wada A, Eto T (1995) Calcitonin-gene-related peptide mediates acetylcholine-induced endothelium-independent vasodilation in mesenteric resistance blood-vessels of the rat. Circ Res 76(6):935–941

    PubMed  CAS  Google Scholar 

  32. Van den Bossche I, Vanheel B (2000) Influence of cannabinoids on the delayed rectifier in freshly dissociated smooth muscle cells of the rat aorta. Br J Pharmacol 131(1):85–93

    Article  PubMed  Google Scholar 

  33. Vanheel B, Van de Voorde J (2001) Regional differences in anandamide- and methanandamide-induced membrane potential changes in rat mesenteric arteries. J Pharmacol Exp Ther 296(2):322–328

    PubMed  CAS  Google Scholar 

  34. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  35. Wellman GC, Quayle JM, Standen NB (1998) ATP-sensitive K+ channel activation by calcitonin gene-related peptide and protein kinase A in pig coronary arterial smooth muscle. J Physiol Lond 507(1):117–129

    Article  PubMed  CAS  Google Scholar 

  36. White R, Hiley CR (1997) The action of the cannabinoid receptor antagonist, SR 141716A, in the rat isolated mesenteric artery. Br J Pharmacol 125(4):689–696

    Article  Google Scholar 

  37. White R, Ho WSV, Bottrill FE, Ford WR, Hiley CR (2001) Mechanisms of anandamide-induced vasorelaxation in rat isolated coronary arteries. Br J Pharmacol 134(4):921–929

    Article  PubMed  CAS  Google Scholar 

  38. Wisskirchen FM, Burt RP, Marshall I (1998) Pharmacological characterization of CGRP receptors mediating relaxation of the rat pulmonary artery and inhibition of twitch responses of the rat vas deferens. Br J Pharmacol 123(8):1673–1683

    Article  PubMed  CAS  Google Scholar 

  39. Yoshimoto R, Mitsui-Saito M, Ozaki H, Karaki H (1998) Effects of adrenomedullin and calcitonin gene-related peptide on contractions of the rat aorta and porcine coronary artery. Br J Pharmacol 123(8):1645–1654

    Article  PubMed  CAS  Google Scholar 

  40. Zygmunt PM, Petersson J, Andersson DA, Chuang HH, Sorgard M, Di Marzo V, Julius D, Hogestatt ED (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400:452–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a BOF grant from Ghent University and by the Interuniversity Attraction Poles Program to L.L. (Belgian Science Policy, project P6/31). The authors are grateful to Julien Dupont, Tom Vanthuyne, and Cyriel Mabilde for unfailing technical assistance.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Vanheel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bol, M., Leybaert, L. & Vanheel, B. Influence of methanandamide and CGRP on potassium currents in smooth muscle cells of small mesenteric arteries. Pflugers Arch - Eur J Physiol 463, 669–677 (2012). https://doi.org/10.1007/s00424-012-1083-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1083-1

Keywords

Navigation