Skip to main content

Advertisement

Log in

Mechanical modulation of cardiac microtubules

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Microtubules are a major component of the cardiac myocyte cytoskeleton. Interventions that alter it may influence cardiac mechanical and electrical activity by disrupting the trafficking of proteins to and from the surface membrane by molecular motors such as dynein, which use microtubules as tracks to step along. Free tubulin dimers may transfer GTP to the α-subunits of G-proteins, thus an increase in free tubulin could increase the activity of G-proteins; evidence for and against such a role exists. There is more general agreement that microtubules act as compression-resisting structures within myocytes, influencing visco-elasticity of myocytes and increasing resistance to shortening when proliferated and resisting deformation from longitudinal shear stress. In response to pressure overload, there can be post-translational modifications resulting in more stable microtubules and an increase in microtubule density. This is accompanied by contractile dysfunction of myocytes which can be reversed by microtubule disruption. There are reports of mechanically induced changes in electrical activity that are dependent upon microtubules, but at present, a consensus is lacking on whether disruption or proliferation would be beneficial in the prevention of arrhythmias. Microtubules certainly play a role in the response of cardiac myocytes to mechanical stimulation, the exact nature and significance of this role is still to be fully determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allen DG, Blinks JR, Godt RE (1984) Influence of deuterium oxide on calcium transients and myofibrillar responses of frog skeletal muscle. J Physiol 354:225–251

    PubMed  CAS  Google Scholar 

  2. Bailey BA, Dipla K, Li S, Houser SR (1997) Cellular basis of contractile derangements of hypertrophied feline ventricular myocytes. J Mol Cell Cardiol 29:1823–1835

    Article  PubMed  CAS  Google Scholar 

  3. Belmadani S, Pous C, Fischmeister R, Mery PF (2004) Post-translational modifications of tubulin and microtubule stability in adult rat ventricular myocytes and immortalized HL-1 cardiomyocytes. Mol Cell Biochem 258:35–48

    Article  PubMed  CAS  Google Scholar 

  4. Belmadani S, Pous C, Ventura-Clapier R, Fischmeister R, Mery PF (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237:39–46

    Article  PubMed  CAS  Google Scholar 

  5. Calaghan SC, Le Guennec JY, White E (2001) Modulation of Ca(2+) signaling by microtubule disruption in rat ventricular myocytes and its dependence on the ruptured patch–clamp configuration. Circ Res 88:E32–E37

    PubMed  CAS  Google Scholar 

  6. Calaghan SC, Le Guennec JY, White E (2004) Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. Prog Biophys Mol Biol 84:29–59

    Article  PubMed  CAS  Google Scholar 

  7. Calligaris D, Verdier-Pinard P, Devred F, Villard C, Braguer D, Lafitte D (2010) Microtubule targeting agents: from biophysics to proteomics. Cell Mol Life Sci 67:1089–1104

    Article  PubMed  CAS  Google Scholar 

  8. Casini S, Tan HL, Demirayak I, Remme CA, Amin AS, Scicluna BP, Chatyan H, Ruijter JM, Bezzina CR, van Ginneken AC, Veldkamp MW (2010) Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res 85:691–700

    Article  PubMed  CAS  Google Scholar 

  9. Cassimeris L, Tran P (2010) Microtubules in vivo. Methods Cell Biol 97:1–530

    Article  Google Scholar 

  10. Choi WS, Khurana A, Mathur R, Viswanathan V, Steele DF, Fedida D (2005) Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor. Circ Res 97:363–371

    Article  PubMed  CAS  Google Scholar 

  11. Collins JF, Pawloski-Dahm C, Davis MG, Ball N, Dorn GW, Walsh RA (1996) The role of the cytoskeleton in left ventricular pressure overload hypertrophy and failure. J Mol Cell Cardiol 28:1435–1443

    Article  PubMed  CAS  Google Scholar 

  12. Cooper G (2000) Cardiocyte cytoskeleton in hypertrophied myocardium. Heart Fail Rev 5:187–201

    Article  PubMed  Google Scholar 

  13. Cooper G (2006) Cytoskeletal networks and the regulation of cardiac contractility: microtubules, hypertrophy, and cardiac dysfunction. Am J Physiol Heart Circ Physiol 291:H1003–H1014

    Article  PubMed  CAS  Google Scholar 

  14. David-Pfeuty T, Simon C, Pantaloni D (1979) Effect of antimitotic drugs on tubulin GTPase activity and self-assembly. J Biol Chem 254:11696–11702

    PubMed  CAS  Google Scholar 

  15. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  PubMed  CAS  Google Scholar 

  16. Dick DJ, Lab MJ (1998) Mechanical modulation of stretch-induced premature ventricular beats: induction of mechanoelectric adaptation period. Cardiovasc Res 38:181–191

    Article  PubMed  CAS  Google Scholar 

  17. Dutcher SK (2001) The tubulin fraternity: alpha to eta. Curr Opin Cell Biol 13:49–54

    Article  PubMed  CAS  Google Scholar 

  18. Fassett JT, Xu X, Hu X, Zhu G, French J, Chen Y, Bache RJ (2009) Adenosine regulation of microtubule dynamics in cardiac hypertrophy. Am J Physiol Heart Circ Physiol 297:H523–H532

    Article  PubMed  CAS  Google Scholar 

  19. Gennerich A, Vale RD (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr Opin Cell Biol 21:59–67

    Article  PubMed  CAS  Google Scholar 

  20. Goldstein MA, Entman ML (1979) Microtubules in mammalian heart muscle. J Cell Biol 80:183–195

    Article  PubMed  CAS  Google Scholar 

  21. Gomez AM, Kerfant BG, Vassort G (2000) Microtubule disruption modulates Ca(2+) signaling in rat cardiac myocytes. Circ Res 86:30–36

    PubMed  CAS  Google Scholar 

  22. Goswami C, Kuhn J, Heppenstall PA, Hucho T (2010) Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS ONE 5:e11654

    Article  PubMed  Google Scholar 

  23. Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044

    Article  PubMed  CAS  Google Scholar 

  24. Harris TS, Baicu CF, Conrad CH, Koide M, Buckley JM, Barnes M, Cooper G, Zile MR (2002) Constitutive properties of hypertrophied myocardium: cellular contribution to changes in myocardial stiffness. Am J Physiol Heart Circ Physiol 282:H2173–H2182

    PubMed  CAS  Google Scholar 

  25. Hein S, Kostin S, Heling A, Maeno Y, Schaper J (2000) The role of the cytoskeleton in heart failure. Cardiovasc Res 45:273–278

    Article  PubMed  CAS  Google Scholar 

  26. Heling A, Zimmermann R, Kostin S, Maeno Y, Hein S, Devaux B, Bauer E, Klovekorn WP, Schlepper M, Schaper W, Schaper J (2000) Increased expression of cytoskeletal, linkage, and extracellular proteins in failing human myocardium. Circ Res 86:846–853

    PubMed  CAS  Google Scholar 

  27. Hill TL, Kirschner MW (1982) Bioenergetics and kinetics of microtubule and actin filament assembly–disassembly. Int Rev Cytol 78:1–125

    Article  PubMed  CAS  Google Scholar 

  28. Hongo K, Brette F, Haroon MM, White E (2000) Mechanisms associated with the negative inotropic effect of deuterium oxide in single rat ventricular myocytes. Exp Physiol 85:133–142

    Article  PubMed  CAS  Google Scholar 

  29. Houser SR, Piacentino V III, Weisser J (2000) Abnormalities of calcium cycling in the hypertrophied and failing heart. J Mol Cell Cardiol 32:1595–1607

    Article  PubMed  CAS  Google Scholar 

  30. Howarth FC, Calaghan SC, Boyett MR, White E (1999) Effect of the microtubule polymerizing agent taxol on contraction, Ca2+ transient and l-type Ca2+ current in rat ventricular myocytes. J Physiol 516:409–419

    Article  PubMed  CAS  Google Scholar 

  31. Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97:163–179

    Article  PubMed  Google Scholar 

  32. Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887

    Article  PubMed  CAS  Google Scholar 

  33. Iribe G, Ward CW, Camelliti P, Bollensdorff C, Mason F, Burton RA, Garny A, Morphew MK, Hoenger A, Lederer WJ, Kohl P (2009) Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res 104:787–795

    Article  PubMed  CAS  Google Scholar 

  34. Isenberg G, Kazanski V, Kondratev D, Gallitelli MF, Kiseleva I, Kamkin A (2003) Differential effects of stretch and compression on membrane currents and [Na+]c in ventricular myocytes. Prog Biophys Mol Biol 82:43–56

    Article  PubMed  CAS  Google Scholar 

  35. Ives CL, Eskin SG, McIntire LV (1986) Mechanical effects on endothelial cell morphology: in vitro assessment. In Vitro Cell Dev Biol 22:500–507

    Article  PubMed  CAS  Google Scholar 

  36. Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4:253–265

    Article  PubMed  CAS  Google Scholar 

  37. Kerfant BG, Vassort G, Gomez AM (2001) Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes. Circ Res 88:E59–E65

    Article  PubMed  CAS  Google Scholar 

  38. Kohl P, Sachs F, Franz MR (2005) Cardiac mechano-electric feedback and arrhythmias, from pipette to patient. Saunders Elsevier, Philadelphia

    Google Scholar 

  39. Kurachi M, Hoshi M, Tashiro H (1995) Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity. Cell Motil Cytoskeleton 30:221–228

    Article  PubMed  CAS  Google Scholar 

  40. Lampidis TJ, Kolonias D, Savaraj N, Rubin RW (1992) Cardiostimulatory and antiarrhythmic activity of tubulin-binding agents. Proc Natl Acad Sci USA 89:1256–1260

    Article  PubMed  CAS  Google Scholar 

  41. Larsen TH, Dalen H, Boyle R, Souza MM, Lieberman M (2000) Cytoskeletal involvement during hypo-osmotic swelling and volume regulation in cultured chick cardiac myocytes. Histochem Cell Biol 113:479–488

    PubMed  CAS  Google Scholar 

  42. Li H, DeRosier DJ, Nicholson WV, Nogales E, Downing KH (2002) Microtubule structure at 8 A resolution. Structure 10:1317–1328

    Article  PubMed  CAS  Google Scholar 

  43. Limas CJ, Limas C (1983) Involvement of microtubules in the isoproterenol-induced ‘down’-regulation of myocardial beta-adrenergic receptors. Biochim Biophys Acta 735:181–184

    Article  PubMed  CAS  Google Scholar 

  44. Loewen ME, Wang Z, Eldstrom J, Dehghani ZA, Khurana A, Steele DF, Fedida D (2009) Shared requirement for dynein function and intact microtubule cytoskeleton for normal surface expression of cardiac potassium channels. Am J Physiol Heart Circ Physiol 296:H71–H83

    Article  PubMed  CAS  Google Scholar 

  45. Lowe J, Li H, Downing KH, Nogales E (2001) Refined structure of alpha beta-tubulin at 3.5 A resolution. J Mol Biol 313:1045–1057

    Article  PubMed  CAS  Google Scholar 

  46. Madias C, Maron BJ, Supron S, Estes NA III, Link MS (2008) Cell membrane stretch and chest blow-induced ventricular fibrillation: commotio cordis. J Cardiovasc Electrophysiol 19:1304–1309

    Article  PubMed  Google Scholar 

  47. Marsh JD, Lachance D, Kim D (1985) Mechanisms of beta-adrenergic receptor regulation in cultured chick heart cells. Role of cytoskeleton function and protein synthesis. Circ Res 57:171–181

    PubMed  CAS  Google Scholar 

  48. Motlagh D, Alden KJ, Russell B, Garcia J (2002) Sodium current modulation by a tubulin/GTP coupled process in rat neonatal cardiac myocytes. J Physiol 540:93–103

    Article  PubMed  CAS  Google Scholar 

  49. Nicolas CS, Park KH, El HA, Camonis J, Kass RS, Escande D, Merot J, Loussouarn G, Le BF, Baro I (2008) IKs response to protein kinase A-dependent KCNQ1 phosphorylation requires direct interaction with microtubules. Cardiovasc Res 79:427–435

    Article  PubMed  CAS  Google Scholar 

  50. Nishimura S, Nagai S, Katoh M, Yamashita H, Saeki Y, Okada J, Hisada T, Nagai R, Sugiura S (2006) Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ Res 98:81–87

    Article  PubMed  CAS  Google Scholar 

  51. O'Connell A, Calaghan S, White E (2005) Abolition of Gi signalling does not reveal a positive inotropic effect of microtubule disruption in rat ventricular myocytes. J Physiol 569P, PC13

  52. Olmsted JB (1986) Microtubule-associated proteins. Annu Rev Cell Biol 2:421–457

    Article  PubMed  CAS  Google Scholar 

  53. Palmer BM, Valent S, Holder EL, Weinberger HD, Bies RD (1998) Microtubules modulate cardiomyocyte beta-adrenergic response in cardiac hypertrophy. Am J Physiol 275:H1707–H1716

    PubMed  CAS  Google Scholar 

  54. Parker KK, Taylor LK, Atkinson JB, Hansen DE, Wikswo JP (2001) The effects of tubulin-binding agents on stretch-induced ventricular arrhythmias. Eur J Pharmacol 417:131–140

    Article  PubMed  CAS  Google Scholar 

  55. Pascarel C, Brette F, Le Guennec JY (2001) Enhancement of the T-type calcium current by hyposmotic shock in isolated guinea-pig ventricular myocytes. J Mol Cell Cardiol 33:1363–1369

    Article  PubMed  CAS  Google Scholar 

  56. Pitcher JA, Hall RA, Daaka Y, Zhang J, Ferguson SS, Hester S, Miller S, Caron MG, Lefkowitz RJ, Barak LS (1998) The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J Biol Chem 273:12316–12324

    Article  PubMed  CAS  Google Scholar 

  57. Quaile MP, Rossman EI, Berretta RM, Bratinov G, Kubo H, Houser SR, Margulies KB (2007) Reduced sarcoplasmic reticulum Ca(2+) load mediates impaired contractile reserve in right ventricular pressure overload. J Mol Cell Cardiol 43:552–563

    Article  PubMed  CAS  Google Scholar 

  58. Rappaport L, Samuel JL (1988) Microtubules in cardiac myocytes. Int Rev Cytol 113:101–143

    Article  PubMed  CAS  Google Scholar 

  59. Rasenick MM, Stein PJ, Bitensky MW (1981) The regulatory subunit of adenylate cyclase interacts with cytoskeletal components. Nature 294:560–562

    Article  PubMed  CAS  Google Scholar 

  60. Rowinsky EK, Donehower RC (1995) Paclitaxel (taxol). N Engl J Med 332:1004–1014

    Article  PubMed  CAS  Google Scholar 

  61. Sadoshima J, Takahashi T, Jahn L, Izumo S (1992) Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 89:9905–9909

    Article  PubMed  CAS  Google Scholar 

  62. Sato H, Nagai T, Kuppuswamy D, Narishige T, Koide M, Menick DR, Cooper G (1997) Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 139:963–973

    Article  PubMed  CAS  Google Scholar 

  63. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  PubMed  CAS  Google Scholar 

  64. Schroder EA, Tobita K, Tinney JP, Foldes JK, Keller BB (2002) Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ Res 91:353–359

    Article  PubMed  CAS  Google Scholar 

  65. Shiels H, O'Connell A, Qureshi MA, Howarth FC, White E, Calaghan S (2007) Stable microtubules contribute to cardiac dysfunction in the streptozotocin-induced model of type 1 diabetes in the rat. Mol Cell Biochem 294:173–180

    Article  PubMed  CAS  Google Scholar 

  66. Shimoni Y, Rattner JB (2001) Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action on rat cardiac K(+) currents. Am J Physiol Endocrinol Metab 281:E575–E585

    PubMed  CAS  Google Scholar 

  67. Stamenovic D, Mijailovich SM, Tolic-Norrelykke IM, Chen J, Wang N (2002) Cell prestress. II. Contribution of microtubules. Am J Physiol Cell Physiol 282:C617–C624

    PubMed  CAS  Google Scholar 

  68. Tagawa H, Wang N, Narishige T, Ingber DE, Zile MR, Cooper G (1997) Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res 80:281–289

    PubMed  CAS  Google Scholar 

  69. Takahashi M, Tsutsui H, Tagawa H, Igarashi-Saito K, Imanaka-Yoshida K, Takeshita A (1998) Microtubules are involved in early hypertrophic responses of myocardium during pressure overload. Am J Physiol 275:H341–H348

    PubMed  CAS  Google Scholar 

  70. Tsutsui H, Tagawa H, Kent RL, McCollam PL, Ishihara K, Nagatsu M, Cooper G (1994) Role of microtubules in contractile dysfunction of hypertrophied cardiocytes. Circulation 90:533–555

    PubMed  CAS  Google Scholar 

  71. Wang N, Yan K, Rasenick MM (1990) Tubulin binds specifically to the signal-transducing proteins, Gs alpha and Gi alpha 1. J Biol Chem 265:1239–1242

    PubMed  CAS  Google Scholar 

  72. Watson PA, Hannan R, Carl LL, Giger KE (1996) Contractile activity and passive stretch regulate tubulin mRNA and protein content in cardiac myocytes. Am J Physiol 271:C684–C689

    PubMed  CAS  Google Scholar 

  73. Webster DR, Patrick DL (2000) Beating rate of isolated neonatal cardiomyocytes is regulated by the stable microtubule subset. Am J Physiol Heart Circ Physiol 278:H1653–H1661

    PubMed  CAS  Google Scholar 

  74. Xiao J, Cao H, Liang D, Liu Y, Zhang H, Zhao H, Liu Y, Li J, Yan B, Peng L, Zhou Z, Chen YH (2010) Taxol, a microtubule stabilizer, prevents ischemic ventricular arrhythmias in rats. J Cell Mol Med. doi:10.1111/j.1582-4934.2010.01106.x

    Google Scholar 

  75. Xiao J, Zhang H, Liang D, Liu Y, Liu Y, Zhao H, Li J, Peng L, Chen YH (2010) Taxol, a microtubule stabilizer, prevents atrial fibrillation in in vitro atrial fibrillation models using rabbit hearts. Med Sci Monit 16:BR353–BR360

    PubMed  CAS  Google Scholar 

  76. Yamamoto S, Tsutsui H, Takahashi M, Ishibashi Y, Tagawa H, Imanaka-Yoshida K, Saeki Y, Takeshita A (1998) Role of microtubules in the viscoelastic properties of isolated cardiac muscle. J Mol Cell Cardiol 30:1841–1853

    Article  PubMed  CAS  Google Scholar 

  77. Yin FC (1981) Ventricular wall stress. Circ Res 49:829–842

    PubMed  CAS  Google Scholar 

  78. Yutao X, Geru W, Xiaojun B, Tao G, Aiqun M (2006) Mechanical stretch-induced hypertrophy of neonatal rat ventricular myocytes is mediated by beta(1)-integrin-microtubule signaling pathways. Eur J Heart Fail 8:16–22

    Article  PubMed  Google Scholar 

  79. Zile MR, Green GR, Schuyler GT, Aurigemma GP, Miller DC, Cooper G (2001) Cardiocyte cytoskeleton in patients with left ventricular pressure overload hypertrophy. J Am Coll Cardiol 37:1080–1084

    Article  PubMed  CAS  Google Scholar 

  80. Zile MR, Koide M, Sato H, Ishiguro Y, Conrad CH, Buckley JM, Morgan JP, Cooper G (1999) Role of microtubules in the contractile dysfunction of hypertrophied myocardium. J Am Coll Cardiol 33:250–260

    Article  PubMed  CAS  Google Scholar 

  81. Zile MR, Richardson K, Cowles MK, Buckley JM, Koide M, Cowles BA, Gharpuray V, Cooper G (1998) Constitutive properties of adult mammalian cardiac muscle cells. Circulation 98:567–579

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Sarah Calaghan for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ed White.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, E. Mechanical modulation of cardiac microtubules. Pflugers Arch - Eur J Physiol 462, 177–184 (2011). https://doi.org/10.1007/s00424-011-0963-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0963-0

Keywords