Skip to main content

Advertisement

Log in

The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The glycocalyx consists of proteoglycans, glycoproteins, glycosaminoglycans, associated plasma proteins, and soluble glycosaminoglycans and covers the surface of all eukaryotic cells. It mediates specific recognition events, modulates biological processes such as ligand–receptor interactions, and has been proposed to affect tumor metastasis. Here, we studied whether the glycocalyx is required for melanoma cell migration. We diminished the glycocalyx of human melanoma cells by inhibiting posttranslational N-glycosylation or by enzymatic digestion of the N-glycosides. This partial destruction of the glycocalyx reduced melanoma cell migration by up to 60%. It was accompanied by the disintegration of a characteristic pH nanoenvironment typically surrounding migrating cells. Restoring this pH profile by stimulating the activity of the Na+/H+ exchanger NHE1 rescued cell migration even in the absence of an intact glycocalyx. The effects of partially removing the glycocalyx compared to those of knocking down β1-integrin expression points to a close functional correlation between glycocalyx, integrins, and cell surface pH nanoenvironment. We conclude that the glycocalyx is required for tumor cell migration. It stabilizes the cell surface pH nanoenvironment allowing a concerted pH-dependent interaction of adhesion receptors and extracellular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Adair BD, Yeager M (2002) Three-dimensional model of the human platelet integrin alpha IIbbeta 3 based on electron cryomicroscopy and X-ray crystallography. Proc Natl Acad Sci U S A 99:14059–14064

    Article  PubMed  CAS  Google Scholar 

  2. Allen A, Flemstrom G (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288:C1–19

    PubMed  CAS  Google Scholar 

  3. Bironaite D, Nesland JM, Dalen H, Risberg B, Bryne M (2000) N-glycans influence the in vitro adhesive and invasive behaviour of three metastatic cell lines. Tumour Biol 21:165–175

    Article  PubMed  CAS  Google Scholar 

  4. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  5. Cordes N, Seidler J, Durzok R, Geinitz H, Brakebusch C (2006) Beta1-integrin-mediated signaling essentially contributes to cell survival after radiation-induced genotoxic injury. Oncogene 25:1378–1390

    Article  PubMed  CAS  Google Scholar 

  6. Denker SP, Barber DL (2002) Cell migration requires both ion translocation and cytoskeletal anchoring by the Na–H exchanger NHE1. J Cell Biol 159:1087–1096

    Article  PubMed  CAS  Google Scholar 

  7. Dieterich P, Klages R, Preuss R, Schwab A (2008) Anomalous dynamics of cell migration. Proc Natl Acad Sci U S A 105:459–463

    Article  PubMed  CAS  Google Scholar 

  8. Dobrossy L, Pavelic ZP, Bernacki RJ (1981) A correlation between cell surface sialyltransferase, sialic acid, and glycosidase activities and the implantability of B16 murine melanoma. Cancer Res 41:2262–2266

    PubMed  CAS  Google Scholar 

  9. Dricu A, Carlberg M, Wang M, Larsson O (1997) Inhibition of N-linked glycosylation using tunicamycin causes cell death in malignant cells: role of down-regulation of the insulin-like growth factor 1 receptor in induction of apoptosis. Cancer Res 57:543–548

    PubMed  CAS  Google Scholar 

  10. Dzekunov SM, Spring KR (1998) Maintenance of acidic lateral intercellular spaces by endogenous fixed buffers in MDCK cell epithelium. J Membr Biol 166:9–14

    Article  PubMed  CAS  Google Scholar 

  11. Eble JA, Tuckwell DS (2003) The alpha2beta1 integrin inhibitor rhodocetin binds to the A-domain of the integrin alpha2 subunit proximal to the collagen-binding site. Biochem J 376:77–85

    Article  PubMed  CAS  Google Scholar 

  12. Elliott JT, Tona A, Plant AL (2003) Comparison of reagents for shape analysis of fixed cells by automated fluorescence microscopy. Cytometry A 52:90–100

    Article  PubMed  CAS  Google Scholar 

  13. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM (2003) Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ Res 93:e136–e142

    Article  PubMed  CAS  Google Scholar 

  14. Ganz MB, Boyarsky G, Boron WF, Sterzel RB (1988) Effects of angiotensin II and vasopressin on intracellular pH of glomerular mesangial cells. Am J Physiol 254:F787–F794

    PubMed  CAS  Google Scholar 

  15. Heifetz A, Keenan RW, Elbein AD (1979) Mechanism of action of tunicamycin on the UDP-GlcNAc:dolichyl-phosphate Glc-NAc-1-phosphate transferase. Biochemistry 18:2186–2192

    Article  PubMed  CAS  Google Scholar 

  16. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  17. Ivaska J, Heino J (2000) Adhesion receptors and cell invasion: mechanisms of integrin-guided degradation of extracellular matrix. Cell Mol Life Sci 57:16–24

    Article  PubMed  CAS  Google Scholar 

  18. Klein M, Seeger P, Schuricht B, Alper SL, Schwab A (2000) Polarization of Na(+)/H(+) and Cl()/HCO (3)() exchangers in migrating renal epithelial cells. J Gen Physiol 115:599–608

    Article  PubMed  CAS  Google Scholar 

  19. Kovbasnjuk ON, Spring KR (2000) The apical membrane glycocalyx of MDCK cells. J Membr Biol 176:19–29

    Article  PubMed  CAS  Google Scholar 

  20. Lagana A, Vadnais J, Le PU, Nguyen TN, Laprade R, Nabi IR, Noel J (2000) Regulation of the formation of tumor cell pseudopodia by the Na(+)/H(+) exchanger NHE1. J Cell Sci 113(Pt 20):3649–3662

    PubMed  CAS  Google Scholar 

  21. Lee GM, Johnstone B, Jacobson K, Caterson B (1993) The dynamic structure of the pericellular matrix on living cells. J Cell Biol 123:1899–1907

    Article  PubMed  CAS  Google Scholar 

  22. Lehenkari PP, Horton MA (1999) Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 259:645–650

    Article  PubMed  CAS  Google Scholar 

  23. Maaser K, Wolf K, Klein CE, Niggemann B, Zanker KS, Brocker EB, Friedl P (1999) Functional hierarchy of simultaneously expressed adhesion receptors: integrin alpha2beta1 but not CD44 mediates MV3 melanoma cell migration and matrix reorganization within three-dimensional hyaluronan-containing collagen matrices. Mol Biol Cell 10:3067–3079

    PubMed  CAS  Google Scholar 

  24. Malo ME, Fliegel L (2006) Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol 84:1081–1095

    Article  PubMed  CAS  Google Scholar 

  25. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, Meijers JC, Holleman F, Hoekstra JB, Vink H, Kastelein JJ, Stroes ES (2006) Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55:480–486

    Article  PubMed  CAS  Google Scholar 

  26. Noble MI, Drake-Holland AJ, Vink H (2008) Hypothesis: arterial glycocalyx dysfunction is the first step in the atherothrombotic process. QJM 101:513–518

    Article  PubMed  CAS  Google Scholar 

  27. O'Hayre M, Salanga CL, Handel TM, Allen SJ (2008) Chemokines and cancer: migration, intracellular signalling and intercellular communication in the microenvironment. Biochem J 409:635–649

    Article  PubMed  CAS  Google Scholar 

  28. Patel H, Barber DL (2005) A developmentally regulated Na–H exchanger in Dictyostelium discoideum is necessary for cell polarity during chemotaxis. J Cell Biol 169:321–329

    Article  PubMed  CAS  Google Scholar 

  29. Pichierri F, Matsuo Y (2002) Effect of protonation of the N-acetyl neuraminic acid residue of sialyl Lewis(X): a molecular orbital study with insights into its binding properties toward the carbohydrate recognition domain of E-selectin. Bioorg Med Chem 10:2751–2757

    Article  PubMed  CAS  Google Scholar 

  30. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  PubMed  CAS  Google Scholar 

  31. Rutkowski JM, Swartz MA (2007) A driving force for change: interstitial flow as a morphoregulator. Trends Cell Biol 17:44–50

    Article  PubMed  CAS  Google Scholar 

  32. Sardet C, Counillon L, Franchi A, Pouyssegur J (1990) Growth factors induce phosphorylation of the Na+/H+ antiporter, glycoprotein of 110 kD. Science 247:723–726

    Article  PubMed  CAS  Google Scholar 

  33. Stock C, Gassner B, Hauck CR, Arnold H, Mally S, Eble JA, Dieterich P, Schwab A (2005) Migration of human melanoma cells depends on extracellular pH and Na+/H+ exchange. J Physiol 567:225–238

    Article  PubMed  CAS  Google Scholar 

  34. Stock C, Mueller M, Kraehling H, Mally S, Noel J, Eder C, Schwab A (2007) pH nanoenvironment at the surface of single melanoma cells. Cell Physiol Biochem 20:679–686

    Article  PubMed  CAS  Google Scholar 

  35. Stuwe L, Muller M, Fabian A, Waning J, Mally S, Noel J, Schwab A, Stock C (2007) pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution. J Physiol 585:351–360

    Article  PubMed  CAS  Google Scholar 

  36. Sundblad G, Kajiji S, Quaranta V, Freeze HH, Varki A (1988) Sulfated N-linked oligosaccharides in mammalian cells. III. Characterization of a pancreatic carcinoma cell surface glycoprotein with N- and O-sulfate esters on asparagine-linked glycans. J Biol Chem 263:8897–8903

    PubMed  CAS  Google Scholar 

  37. Supino R, Prosperi E, Formelli F, Mariani M, Parmiani G (1986) Characterization of a doxorubicin-resistant murine melanoma line: studies on cross-resistance and its circumvention. Br J Cancer 54:33–42

    PubMed  CAS  Google Scholar 

  38. Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33:1719–1723

    Article  PubMed  Google Scholar 

  39. van den Berg B, Vink H (2006) Glycocalyx perturbation: cause or consequence of damage to the vasculature? Am J Physiol Heart Circ Physiol 290:H2174–2175

    Article  PubMed  CAS  Google Scholar 

  40. van Muijen GN, Jansen KF, Cornelissen IM, Smeets DF, Beck JL, Ruiter DJ (1991) Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int J Cancer 48:85–91

    Article  PubMed  Google Scholar 

  41. Vink H, Constantinescu AA, Spaan JA (2000) Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet–endothelial cell adhesion. Circulation 101:1500–1502

    PubMed  CAS  Google Scholar 

  42. Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  PubMed  CAS  Google Scholar 

  43. Yamaguchi H, Wyckoff J, Condeelis J (2005) Cell migration in tumors. Curr Opin Cell Biol 17:559–564

    Article  PubMed  CAS  Google Scholar 

  44. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99:1304–1310

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Deutsche Forschungsgemeinschaft (DFG; grant numbers Schw 407/10-1 and Eb 177/5-1), by the fund “Innovative Medical Research” of the University of Münster Medical School (grant number: ST 210601), and by the Rolf Dierichs-Stiftung (grant to C.S. (BD 193439)). Cariporide was a kind gift from Drs. H-J. Lang and J. Pünter at Sanofi Aventis. We extend special thanks to Drs. A. Fabian, K. Kusche-Vihrog, and Y. Treffner for technical expertise with the siRNA technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Krähling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krähling, H., Mally, S., Eble, J.A. et al. The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells. Pflugers Arch - Eur J Physiol 458, 1069–1083 (2009). https://doi.org/10.1007/s00424-009-0694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0694-7

Keywords

Navigation