Skip to main content
Log in

Somatodendritic integration under increased network activity in layer 5 pyramidal cells of the somatosensory cortex

  • Central Nervous System
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Integrative properties of single neurons have been extensively studied in acute brain slices. However, these preparations are characterized by extremely low levels of synaptic and action potential activity. In comparison to in vivo, reduced intracortical input and lack of subcortical modulation increase the effective difference between mean membrane potential and spiking threshold, preventing self-sustained network activity in vitro. To elicit an increased and stable network activity (INA) in vitro comparable to that found in awake animals, we mimicked subcortical cholinergic and serotoninergic inputs using carbachol or barium alone or in combination with serotonin in layer 5 pyramidal cells in slices of mouse somatosensory cortex. INA is primarily induced by a modulation of intrinsic conductances resulting in a depolarization of the membrane potential. We studied the impact of INA on synaptic and somatodendritic integration using extracellular stimulation and dendritic calcium imaging. Synaptic inhibition is strengthened due to an increased driving force for chloride. The critical frequency at which somatic action potentials induce a dendritic calcium action potential is lowered. Simultaneous inhibitory synaptic input is powerful enough to suppress dendritic calcium action potential generation. Pharmacologically induced INA enables the study of neuronal integration in well-accessible cortical slices within an active network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abeles M (1982) Local cortical circuits—an electrophysiological study. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Agmon A, Connors BW (1991) Thalamocortical responses of mouse somatosensory (barrel) cortex in vitro. Neuroscience 41:365–379

    Article  PubMed  CAS  Google Scholar 

  3. Aracri P, Colombo E, Mantegazza M, Scalmani P, Curia G, Avanzini G, Franceschetti S (2006) Layer-specific properties of the persistent sodium current in sensorimotor cortex. J Neurophysiol 95:3460–3468

    Article  PubMed  CAS  Google Scholar 

  4. Baranyi A, Szente MB, Woody CD (1993) Electrophysiological characterization of different types of neurons recorded in vivo in the motor cortex of the cat. II. Membrane parameters, action potentials, current-induced voltage responses and electrotonic structures. J Neurophysiol 69:1865–1879

    PubMed  CAS  Google Scholar 

  5. Berger T, Larkum ME, Lüscher HR (2001) High Ih channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. J Neurophysiol 85:855–868

    PubMed  CAS  Google Scholar 

  6. Berger T, Lüscher HR, Giugliano M (2006) Transient rhythmic network activity in the somatosensory cortex evoked by distributed input in vitro. Neuroscience 140:1401–1413

    Article  PubMed  CAS  Google Scholar 

  7. Berger T, Senn W, Lüscher HR (2003) Hyperpolarization-activated current Ih disconnects somatic and dendritic spike initiation zones in layer V pyramidal neurons. J Neurophysiol 90:2428–2437

    Article  PubMed  Google Scholar 

  8. Buhl EH, Tamas G, Fisahn A (1998) Cholinergic activation and tonic excitation induce persistent gamma oscillations in mouse somatosensory cortex in vitro. J Physiol 513:117–126

    Article  PubMed  CAS  Google Scholar 

  9. Capogna M, Gähwiler BH, Thompson SM (1996) Calcium-independent actions of alpha-latrotoxin on spontaneous and evoked synaptic transmission in the hippocampus. J Neurophysiol 76:3149–3158

    PubMed  CAS  Google Scholar 

  10. Chen D, Fetz EE (2005) Characteristic membrane potential trajectories in primate sensorimotor cortex neurons recorded in vivo. J Neurophysiol 94:2713–2725

    Article  PubMed  Google Scholar 

  11. Crochet S, Petersen CC (2006) Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat Neurosci 9:608–610

    Article  PubMed  CAS  Google Scholar 

  12. Descarries L, Gisiger V, Steriade M (1997) Diffuse transmission by acetylcholine in the CNS. Prog Neurobiol 53:603–625

    Article  PubMed  CAS  Google Scholar 

  13. Destexhe A, Pare D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531–1547

    PubMed  CAS  Google Scholar 

  14. Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739–751

    Article  PubMed  CAS  Google Scholar 

  15. DeWeese MR, Zador AM (2006) Non-Gaussian membrane potential dynamics imply sparse, synchronous activity in auditory cortex. J Neurosci 26:12206–12218

    Article  PubMed  CAS  Google Scholar 

  16. Grasso A, Alema S, Rufini S, Senni MI (1980) Black widow spider toxin-induced calcium fluxes and transmitter release in a neurosecretory cell line. Nature 283:774–776

    Article  PubMed  CAS  Google Scholar 

  17. Gulledge AT, Stuart GJ (2005) Cholinergic inhibition of neocortical pyramidal neurons. J Neurosci 25:10308–10320

    Article  PubMed  CAS  Google Scholar 

  18. Harvey PJ, Li X, Li Y, Bennett DJ (2006) 5-HT2 receptor activation facilitates a persistent sodium current and repetitive firing in spinal motoneurons of rats with and without chronic spinal cord injury. J Neurophysiol 96:1158–1170

    Article  PubMed  CAS  Google Scholar 

  19. Helmchen F, Svoboda K, Denk W, Tank DW (1999) In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons. Nat Neurosci 2:989–996

    Article  PubMed  CAS  Google Scholar 

  20. Henkel AW, Sankaranarayanan S (1999) Mechanisms of alpha-latrotoxin action. Cell Tissue Res 296:229–233

    Article  PubMed  CAS  Google Scholar 

  21. Henze DA, McMahon DB, Harris KM, Barrionuevo G (2002) Giant miniature EPSCs at the hippocampal mossy fiber to CA3 pyramidal cell synapse are monoquantal. J Neurophysiol 87:15–29

    PubMed  Google Scholar 

  22. Hill JJ, Peralta EG (2001) Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. J Biol Chem 276:5505–5510

    Article  PubMed  CAS  Google Scholar 

  23. Krnjevic K, Pumain R, Renaud L (1971a) Effects of Ba2+ and tetraethylammonium on cortical neurones. J Physiol 215:223–245

    PubMed  CAS  Google Scholar 

  24. Krnjevic K, Pumain R, Renaud L (1971b) The mechanism of excitation by acetylcholine in the cerebral cortex. J Physiol 215:247–268

    PubMed  CAS  Google Scholar 

  25. Larkum ME, Kaiser KM, Sakmann B (1999a) Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. Proc Natl Acad Sci USA 96:14600–14604

    Article  PubMed  CAS  Google Scholar 

  26. Larkum ME, Zhu JJ (2002) Signaling of layer 1 and whisker-evoked Ca2+ and Na+ action potentials in distal and terminal dendrites of rat neocortical pyramidal neurons in vitro and in vivo. J Neurosci 22:6991–7005

    PubMed  CAS  Google Scholar 

  27. Larkum ME, Zhu JJ, Sakmann B (1999b) A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398:338–341

    Article  PubMed  CAS  Google Scholar 

  28. Lazarovici P, Lelkes PI (1992) Pardaxin induces exocytosis in bovine adrenal medullary chromaffin cells independent of calcium. J Pharmacol Exp Ther 263:1317–1326

    PubMed  CAS  Google Scholar 

  29. Lee AK, Manns ID, Sakmann B, Brecht M (2006) Whole-cell recordings in freely moving rats. Neuron 51:399–407

    Article  PubMed  CAS  Google Scholar 

  30. London M, Häusser M (2005) Dendritic computation. Annu Rev Neurosci 28:503–532

    Article  PubMed  CAS  Google Scholar 

  31. Lucas-Meunier E, Fossier P, Baux G, Amar M (2003) Cholinergic modulation of the cortical neuronal network. Pflugers Arch 446:17–29

    PubMed  CAS  Google Scholar 

  32. Maclean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48:811–823

    Article  PubMed  CAS  Google Scholar 

  33. Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498

    Article  PubMed  CAS  Google Scholar 

  34. Matsumura M, Cope T, Fetz EE (1988) Sustained excitatory synaptic input to motor cortex neurons in awake animals revealed by intracellular recording of membrane potentials. Exp Brain Res 70:463–469

    Article  PubMed  CAS  Google Scholar 

  35. McCormick DA (1989) Cholinergic and noradrenergic modulation of thalamocortical processing. Trends Neurosci 12:215–221

    Article  PubMed  CAS  Google Scholar 

  36. McCormick DA, Prince DA (1986) Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J Physiol 375:169–194

    PubMed  CAS  Google Scholar 

  37. Miller DB, O’Callaghan JP (2006) The pharmacology of wakefulness. Metabolism 55(Suppl 2):S13–S19

    Article  PubMed  CAS  Google Scholar 

  38. Paré D, Shink E, Gaudreau H, Destexhe A, Lang EJ (1998) Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo. J Neurophysiol 79:1450–1460

    PubMed  Google Scholar 

  39. Perez-Garci E, Gassmann M, Bettler B, Larkum ME (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron 50:603–616

    Article  PubMed  CAS  Google Scholar 

  40. Petrenko AG (1993) Alpha-Latrotoxin receptor. Implications in nerve terminal function. FEBS Lett 325:81–85

    Article  PubMed  CAS  Google Scholar 

  41. Rudolph M, Pospischil M, Timofeev I, Destexhe A (2007) Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27:5280–5290

    Article  PubMed  CAS  Google Scholar 

  42. Schiller J, Schiller Y, Stuart G, Sakmann B (1997) Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J Physiol 505:605–616

    Article  PubMed  CAS  Google Scholar 

  43. Schwindt PC, Crill WE (1995) Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. J Neurophysiol 74:2220–2224

    PubMed  CAS  Google Scholar 

  44. Seeger T, Alzheimer C (2001) Muscarinic activation of inwardly rectifying K+ conductance reduces EPSPs in rat hippocampal CA1 pyramidal cells. J Physiol 535:383–396

    Article  PubMed  CAS  Google Scholar 

  45. Sickmann T, Alzheimer C (2003) Short-term desensitization of G-protein-activated, inwardly rectifying K+ (GIRK) currents in pyramidal neurons of rat neocortex. J Neurophysiol 90:2494–2503

    Article  PubMed  CAS  Google Scholar 

  46. Sidiropoulou K, Pissadaki EK, Poirazi P (2006) Inside the brain of a neuron. EMBO Rep 7:886–892

    Article  PubMed  CAS  Google Scholar 

  47. Silberberg G, Wu C, Markram H (2004) Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit. J Physiol 556:19–27

    Article  PubMed  CAS  Google Scholar 

  48. Steriade M, McCarley R (2005) Brain control of wakefulness and sleeping. Plenum, New York

    Google Scholar 

  49. Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85:1969–1985

    PubMed  CAS  Google Scholar 

  50. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72

    Article  PubMed  CAS  Google Scholar 

  51. Stuart GJ, Sakmann B (1995) Amplification of EPSPs by axosomatic sodium channels in neocortical pyramidal neurons. Neuron 15:1065–1076

    Article  PubMed  CAS  Google Scholar 

  52. Sun QQ, Huguenard JR, Prince DA (2006) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230

    Article  PubMed  CAS  Google Scholar 

  53. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385:161–165

    Article  PubMed  CAS  Google Scholar 

  54. Takigawa T, Alzheimer C (1999) G protein-activated inwardly rectifying K+ (GIRK) currents in dendrites of rat neocortical pyramidal cells. J Physiol 517:385–390

    Article  PubMed  CAS  Google Scholar 

  55. Takigawa T, Alzheimer C (2003) Interplay between activation of GIRK current and deactivation of Ih modifies temporal integration of excitatory input in CA1 pyramidal cells. J Neurophysiol 89:2238–2244

    Article  PubMed  CAS  Google Scholar 

  56. Waters J, Helmchen F (2006) Background synaptic activity is sparse in neocortex. J Neurosci 26:8267–8277

    Article  PubMed  CAS  Google Scholar 

  57. Woody CD, Swartz BE, Gruen E (1978) Effects of acetylcholine and cyclic GMP on input resistance of cortical neurons in awake cats. Brain Res 158:373–395

    Article  PubMed  CAS  Google Scholar 

  58. Zhu Y, Zhu JJ (2004) Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J Neurosci 24:1272–1279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Alain Destexhe, Michele Giugliano, Serge Korogod, Matthew Larkum, and Hans-R. Lüscher for useful discussions and comments on earlier versions of the manuscript. This work was supported by the Swiss National Foundation (Grant 3100-107529/1) and the Novartis Foundation for Medical-Biological Research.

Disclosures

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Berger.

Electronic supplementary material

Below is the image is a link to a high resolution version

Supplementary Fig. 1

Serotonin activates the persistent sodium current in layer 5 pyramidal cells. Somatic voltage—clamp recording of persistent sodium currents. The pipette solution contained (in mM): 120 CsOH, 5 CsCl, 20 TEA—acetate, 4 4—aminopyridine, 10 EGTA, 10 HEPES, 4 Mg—ATP, 0.3 Na2—GTP, 10 Na2—Phosphocreatine, pH adjusted to 7.3 with gluconic acid (50 % v/v in H2O). Under control conditions, potassium and calcium currents as well as Ih are blocked with Cs—gluconate, TEA, and 4—aminopyridine in the pipette solution and 100 μM NiCl2, 200 μM CdCl2, and 20 μM ZD7288 in the bath. A voltage command (upper panel) from a clamp potential Vc of —70 mV to 0 mV for 2 s results in the complete inactivation of the transient sodium current. A consecutive ramp voltage command from 0 mV to —70 mV within 2 s (slope —35 mV / s) activates the persistent current which can be seen as a slow downward deflection of the current trace (arrow; lower panel, black trace). The activation range for the persistent sodium current is 0 to —55 mV. Using the identical protocol following bath application of 20 μM serotonin results in an increased amplitude of the persistent sodium current (lower panel, gray trace). Mouse P13. (JPG 286 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neubauer, F.B., Berger, T. Somatodendritic integration under increased network activity in layer 5 pyramidal cells of the somatosensory cortex. Pflugers Arch - Eur J Physiol 455, 1063–1079 (2008). https://doi.org/10.1007/s00424-007-0350-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0350-z

Keywords

Navigation