Skip to main content
Log in

Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels

  • Cell and Molecular Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Human HeLa cells transfected with mouse connexin45 were used to explore the experimental conditions suitable to measure currents carried by gap junction hemichannels. Experiments were performed with a voltage-clamp technique and whole-cell recording. Lowering [Ca2+]o from 2 mM to 20 nM evoked an extra current, I m, putatively carried by Cx45 hemichannels. However, the variability of I m (size, voltage sensitivity, kinetics) suggested the involvement of other channels. The finding that growth medium in the incubator increased the osmolarity with time implied that volume-regulated anion channels (VRAC) may participate. This assumption was reinforced by the following observations. On the one hand, keeping [Ca2+]o normal while the osmolarity of the extracellular solution was reduced from 310 to 290 mOsm yielded a current characteristic of VRAC; I VRAC activated/deactivated at negative/positive voltage, giving rise to the conductance functions g VRAC,inst=f(V m) (inst: instantaneous; V m: membrane potential) and g VRAC,ss=f(V m) (ss: steady state). Moreover, it was reversibly inhibited by mibefradil, a Clchannel blocker (binding constant K d=38 μM, Hill coefficient n=12), but not by the gap junction channel blocker 18α-glycyrrhetinic acid. On the other hand, minimizing the osmotic imbalance while [Ca2+]o was reduced led to a current typical for Cx45 hemichannels; I hc activated/deactivated at positive/negative voltage. Furthermore, it was reversibly inhibited by 18α-glycyrrhetinic acid or palmitoleic acid, but not by mibefradil. Computations based on g VRAC,ss=f(V m) and g hc,ss=f(V m) indicated that the concomitant operation of both currents results in a bell-shaped conductance–voltage relationship. The functional implications of the data presented are discussed. Conceivably, VRAC and hemichannels are involved in a common signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bader P, Weingart R (2003) Pitfalls in examining connexin hemichannels. In: Proceedings of the 2003 International Gap Junction Conference, Cambridge, UK, 23–28 August, p 41

  2. Bader P, Weingart R (2004) Conductive and kinetic properties of connexin45 hemichannels expressed in transfected HeLa cells. J Membr Biol 199:143–154

    Article  PubMed  CAS  Google Scholar 

  3. Bittman KS, Lo Turco JJ (1999) Differential regulation of connexin 26 and 43 in murine neocortical precursors. Cereb Cortex 9:188–195

    Article  PubMed  CAS  Google Scholar 

  4. Burt JM, Massey KD, Minnich BN (1991) Uncoupling of cardiac cells by fatty acids: structure–activity relationships. Am J Physiol Cell Physiol 260:C439–C448

    CAS  Google Scholar 

  5. Chen L, Wang L, Zhu L, Nie S, Zhang J, Zhong P, Cai B, Luo H, Jacob TJC (2002) Cell cycle-dependent expression of volume-activated chloride currents in nasopharyngeal carcinoma cells. Am J Physiol Cell Physiol 283:C1313–C1323

    PubMed  CAS  Google Scholar 

  6. Desplantez T, Weingart R (2004) Cardiac connexins Cx43 and Cx45: formation of diverse gap junction channels with diverse electrical properties. Pflügers Arch 448:363–375

    Article  PubMed  CAS  Google Scholar 

  7. De Vries SH, Schwartz EA (1992) Hemi-gap junction channels in solitary horizontal cells of the catfish retina. J Physiol (Lond) 445:201–230

    Google Scholar 

  8. Díaz M, Sepúlveda FV (1995) Characterization of Ca2+-dependent inwardly rectifying K+ currents in HeLa cells. Pflügers Arch 430:168–180

    Article  PubMed  Google Scholar 

  9. Díaz M, Valverde MA, Higgins CF, Rucareanu C, Sepúlveda FV (1993) Volume-activated chloride channels in HeLa cells are blocked by verapamil and dideoxyforskolin. Pflügers Arch 422:347–353

    Article  PubMed  Google Scholar 

  10. Ebihara L, Berthoud VM, Beyer EC (1995) Distinct behavior of connexin56 and connexin46 gap junction channels can be predicted from the behavior of their hemi-gap-junctional channels. Biophys J 68:1796–1803

    Article  PubMed  CAS  Google Scholar 

  11. Elfgang C, Eckert R, Lichtenberg-Fraté H, Butterweck A, Traub O, Klein RA, Hülser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129:805–817

    Article  PubMed  CAS  Google Scholar 

  12. Eskandari S, Zampighi GA, Leung DW, Wright EM, Loo DDF (2002) Inhibition of gap junction hemichannels by chloride channel blockers. J Membr Biol 185:93–102

    Article  PubMed  CAS  Google Scholar 

  13. Harris AL (2001) Emerging issues of connexin channels: biophysics fills the gap. Quart Rev Biophys 34:325–472

    Article  CAS  Google Scholar 

  14. John S, Cesario D, Weiss JN (2003) Gap junction hemichannels in the heart. Acta Physiol Scand 179:23–31

    Article  PubMed  CAS  Google Scholar 

  15. Kamermans M, Fahrenfort I, Schultz K, Janssen-Bienhold U, Sjoerdsma T, Weiler R (2001) Hemichannel-mediated inhibition in the outer retina. Science 292:1178–1180

    Article  PubMed  CAS  Google Scholar 

  16. Li H, Liu TF, Lazrak A, Peracchia C, Goldberg GS, Lampe PD, Johnson RG (1996) Properties and regulation of gap junction hemichannels in the plasma membranes of cultured cells. J Cell Biol 134:1019–1030

    Article  PubMed  CAS  Google Scholar 

  17. McGuigan JAS, Lüthi D, Buri A (1991) Calcium buffer solutions and how to make them: a do it yourself guide. Can J Physiol Pharmacol 69:1733–1749

    PubMed  CAS  Google Scholar 

  18. Nilius B, Droogmans G (2003) Amazing chloride channels: an overview. Acta Physiol Scand 177:119–147

    Article  PubMed  CAS  Google Scholar 

  19. Nilius B, Sehrer J, Viana F, De Greef C, Raeymaekers L, Eggermont J, Droogmans G (1994) Volume-activated Clcurrents in different mammalian non-excitable cell types. Pflügers Arch 428:364–371

    Article  PubMed  CAS  Google Scholar 

  20. Nilius B, Prenen J, Voets T, Eggermont J, Droogmans G (1998) Activation of volume-regulated chloride currents by reduction of intracellular ionic strength in bovine endothelial cells. J Physiol (Lond) 506(2):353–361

    Article  CAS  Google Scholar 

  21. Sauvé R, Roy G, Payet D (1983) Single channel K+ currents from HeLa cells. J Membr Biol 74:41–49

    Article  PubMed  Google Scholar 

  22. Sauvé R, Simoneau C, Monette R, Roy G (1986) Single-channel analysis of the potassium permeability in HeLa cancer cells: evidence for a calcium-activated potassium channel of small unitary conductance. J Membr Biol 92:269–282

    Article  PubMed  Google Scholar 

  23. Segretain D, Falk MM (2004) Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochim Biophys Acta 1662:3–21

    Article  PubMed  CAS  Google Scholar 

  24. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  25. Sugiura H, Toyama J, Tsuboi N, Kamiya K, Kodama I (1990) ATP directly affects junctional conductance between paired ventricular myocytes isolated from guinea pig heart. Circ Res 66:1095–1102

    PubMed  CAS  Google Scholar 

  26. Trexler EB, Bennett MVL, Bargiello TA, Verselis VK (1996) Voltage gating and permeation in a gap junction hemichannel. Proc Natl Acad Sci U S A 93:5836–5841

    Article  PubMed  CAS  Google Scholar 

  27. Valiunas V (2002) Biophysical properties of connexin-45 gap junction hemichannels studied in vertebrate cells. J Gen Physiol 119:147–164

    Article  PubMed  CAS  Google Scholar 

  28. Valiunas V, Weingart R (2000) Electrical properties of gap junction hemichannels identified in transfected HeLa cells. Pflügers Arch 440:366–379

    Article  PubMed  CAS  Google Scholar 

  29. Valiunas V, Manthey D, Vogel R, Willecke K (1999) Biophysical properties of mouse connexin30 gap junction channels studied in transfected human HeLa cells. J Physiol 519(3):631–644

    Article  PubMed  CAS  Google Scholar 

  30. Valiunas V, Weingart R, Brink PR (2000) Formation of heterotypic gap junction channels by connexins 40 and 43. Circ Res 86:e42–e49

    PubMed  CAS  Google Scholar 

  31. Zheng YJ, Furukawa T, Tajimi K, Inagaki N (2003) Cl- channel blockers inhibit transition of quiescent (G0) fibroblasts into the cell cycle. J Cell Physiol 194:376–383

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Lüthi for technical assistance and B. Nilius, University of Leuven, Belgium, for suggesting the use of mibefradil. Transfectants were provided by K. Willecke, Institute of Genetics, University of Bonn, Germany. Supported by the Swiss National Science Foundation (31-55297.98, 31-67230.01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Weingart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, P., Weingart, R. Pitfalls when examining gap junction hemichannels: interference from volume-regulated anion channels. Pflugers Arch - Eur J Physiol 452, 396–406 (2006). https://doi.org/10.1007/s00424-006-0046-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0046-9

Keywords