Skip to main content
Log in

The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We systematically investigate the response of neurons to oscillatory currents and synaptic-like inputs and we extend our investigation to non-structured synaptic-like spiking inputs with more realistic distributions of presynaptic spike times. We use two types of chirp-like inputs consisting of (i) a sequence of cycles with discretely increasing frequencies over time, and (ii) a sequence having the same cycles arranged in an arbitrary order. We develop and use a number of frequency-dependent voltage response metrics to capture the different aspects of the voltage response, including the standard impedance (Z) and the peak-to-trough amplitude envelope (\(V_{\text {ENV}}\)) profiles. We show that Z-resonant cells (cells that exhibit subthreshold resonance in response to sinusoidal inputs) also show \( V_{\text {ENV}} \)-resonance in response to sinusoidal inputs, but generally do not (or do it very mildly) in response to square-wave and synaptic-like inputs. In the latter cases the resonant response using Z is not predictive of the preferred frequencies at which the neurons spike when the input amplitude is increased above subthreshold levels. We also show that responses to conductance-based synaptic-like inputs are attenuated as compared to the response to current-based synaptic-like inputs, thus providing an explanation to previous experimental results. These response patterns were strongly dependent on the intrinsic properties of the participating neurons, in particular whether the unperturbed Z-resonant cells had a stable node or a focus. In addition, we show that variability emerges in response to chirp-like inputs with arbitrarily ordered patterns where all signals (trials) in a given protocol have the same frequency content and the only source of uncertainty is the subset of all possible permutations of cycles chosen for a given protocol. This variability is the result of the multiple different ways in which the autonomous transient dynamics is activated across cycles in each signal (different cycle orderings) and across trials. We extend our results to include high-rate Poisson distributed current- and conductance-based synaptic inputs and compare them with similar results using additive Gaussian white noise. We show that the responses to both Poisson-distributed synaptic inputs are attenuated with respect to the responses to Gaussian white noise. For cells that exhibit oscillatory responses to Gaussian white noise (band-pass filters), the response to conductance-based synaptic inputs are low-pass filters, while the response to current-based synaptic inputs may remain band-pass filters, consistent with experimental findings. Our results shed light on the mechanisms of communication of oscillatory activity among neurons in a network via subthreshold oscillations and resonance and the generation of network resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allen EJ, Novosel SJ, Zhang Z (1998) Finite element and difference approximation of some linear stochastic partial differential equations. Stoch Stoch Rep 64:117–142

    Article  Google Scholar 

  • Alonso AA, Llinás RR (1989) Subthreshold Na\(^{+} \)-dependent theta like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–177

    Article  CAS  PubMed  Google Scholar 

  • Amir R, Michaelis M, Devor M (1999) Membrane potential oscillations in dorsal root ganglion neurons: role in normal electrogenesis and neuropathic pain. J Neurosci 19:8589–8596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir R, Liu C-N, Kocsis J, Devor M (2002) Oscillatory mechanism in primary sensory neurons. Brain 125:421–435

    Article  PubMed  Google Scholar 

  • Amit DJ, Brunel N (1997) Dynamics of a recurrent network of spiking neurons before and following learning. Cereb Cortex 7:237–252

    Article  CAS  PubMed  Google Scholar 

  • Amit DJ, Tsodyks MV (1991) Quantitative study of attractor neural network retrieving at low spike rates I: substrate spikes, rates and neuronal gain. Network 2:259–274

    Article  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hear Res 22:31–36

    Article  CAS  PubMed  Google Scholar 

  • Axmacher N, Mormann F, Fernandez G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev, 170–1802

  • Balu R, Larimer P, Strowbridge BW (2004) Phasic stimuli evoke precisely timed spikes in intermittently discharging mitral cells. J Neurophysiol 92:743–753

    Article  PubMed  Google Scholar 

  • Baroni F, Burkitt AN, Grayden DB (2014) Interplay of intrinsic and synaptic conductances in the generation of high-frequency oscillations in interneuronal networks with irregular spiking. PLoS Comp Biol 10:e1003574

    Article  CAS  Google Scholar 

  • Baspinar E, Schulen L, Olmi S, Zakharova A (2021) Coherence resonance in neuronal populations: mean-field versus network model. Phys Rev E 103:032308

    Article  CAS  PubMed  Google Scholar 

  • Beatty J, Song SC, Wilson CJ (2015) Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs. J Neurophysiol 113:688–700

    Article  PubMed  Google Scholar 

  • Benzi R, Parisi G, Sutera A, Vulpiani A (1982) Stochastic resonance in climatic change. Tellus 34:10–16

    Article  Google Scholar 

  • Bel A, Rotstein HG (2019) Membrane potential resonance in non-oscillatory neurons interacts with synaptic connectivity to produce network oscillations. J Comp Neurosci 46:169–195

    Article  Google Scholar 

  • Belluscio MA, Mizuseki K, Schmidt R, Kemper R, Buzsáki G (2012) Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J Neurosci 32:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benda J, Longtin A, Maler L (2005) Spike-frequency adaptation separates transient communication signals from background oscillations. J Neurosci 25:2312–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein JG, Boyden ES (2012) Optogenetic tools for analyzing the neural circuits of behavior. Curr Opin Neurobiol 22:61–71

    Article  CAS  PubMed  Google Scholar 

  • Bilkey DK, Heinemann U (1999) Intrinsic theta-frequency membrane potential oscillations in layer III/V perirhinal cortex neurons of the rat. Hippocampus 9:510–518

    Article  CAS  PubMed  Google Scholar 

  • Boehlen A, Heinemann U, Erchova I (2010) The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. J Neurosci 30:4585–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehlen A, Henneberger C, Heinemann U, Erchova I (2013) Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. J Neurophysiol 109:445–463

    Article  PubMed  Google Scholar 

  • Boehmer G, Greffrath W, Martin E, Hermann S (2000) Subthreshold oscillation of the membrane potential in magnocellular neurones of the rat supraoptic nucleus. J Physiol 526:115–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L (2011) Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. J Neurosci 31:11028–11038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bol K, Marsat G, Mejías JF, Maler L, Longtin A (2013) Modeling cancelation of periodic inputs with burst-stdp and feedback. Neural Netw 47:120–133

    Article  CAS  PubMed  Google Scholar 

  • Bourdeau M, Morin F, Laurent C, Azzi M, Lacaille J (2007) Kv4.3-mediated A-type K\(^+\) currentes underlie rhythmic activity in hippocampal interneurons. J Neurosci 27:1942–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bracci E, Centonze D, Bernardi G, Calabresi P (2003) Voltage-dependent membrane potential oscillations in rat striatal fast-spiking interneurons. J Physiol 15:121–130

    Article  CAS  Google Scholar 

  • Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsáki G (1995) Gamma (40–100 hz) oscillation in the hippocampus of the behaving rat. J Neurosci 15:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brea JN, Kay LM, Kopell NJ (2009) Biophysical model for gamma rhythms in the olfactory bulb via subthreshold oscillations. Proc Natl Acad Sci USA 106:21954–21959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comp Neurosci 8:183–208

    Article  CAS  Google Scholar 

  • Brunel N, Chance FS, Fourcaud N, Abbott LF (2001) Effects of synaptic noise and filtering on the frequency response of spiking neurons. Phys Rev Lett 86:2186–2189

    Article  CAS  PubMed  Google Scholar 

  • Burden RL, Faires JD (1980) Numerical analysis. PWS Publishing Company, Boston

    Google Scholar 

  • Burgess C, Schuck NW, Burgess N (2011) Temporal neuronal oscillations can produce spatial phase codes. In: Space, Time and Number in the Brain (S. Dehaene & E. M. Brannon, eds.), pp. 59–69

  • Chapman CA, Lacaille JC (1999) Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol 81:1296–1307

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li X, Rotstein HG, Nadim F (2016) Membrane potential resonance frequency directly influences network frequency through gap junctions. J Neurophysiol 116:1554–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • Chorev E, Yarom Y, Lampl I (2007) Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J Neurosci 27:5043–5052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuation. Biophys J 71:3013–3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrobak JJ, Buzsáki G (1998) Gamma oscillations in the entorhinal cortex of the freely behaving rat. J Neurosci 18:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in the hippocampus by individual GABAergic interneurons. Nature 378:75–78

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL (2013) Mechanisms and functions of theta rhythms. Annu Rev Neurosci 36:295–312

    Article  CAS  PubMed  Google Scholar 

  • Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, Moser M-B, Moser EI (2009) Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–358

    Article  CAS  PubMed  Google Scholar 

  • Collins JJ, Imhoff TT, Grigg P (1996) Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. J Neurophysiol 76:642–645

    Article  CAS  PubMed  Google Scholar 

  • D’angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K\(^{+} \) - dependent mechanism. J Neurosci 21:759–770

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805–815

    Article  PubMed  CAS  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    Article  CAS  PubMed  Google Scholar 

  • Desmaisons D, Vincent J-D, Lledo P-M (1999) Control of action potential timing by intrinsic subthreshold oscillations in olfactory bulb output neurons. J Neurosci 19:10727–10737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVille E, Vanden-Eijnden REL, Muratov CB (2005) Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys Rev E 72:031105

    Article  CAS  Google Scholar 

  • Dickson CT, Magistretti J, Shalinsky MH, Fransén E, Hasselmo M, Alonso AA (2000) Properties and role of I\(_{h} \) in the pacing of subthreshold oscillation in entorhinal cortex layer II neurons. J Neurophysiol 83:2562–2579

    Article  CAS  PubMed  Google Scholar 

  • Dickson CT, Magistretti J, Shalinsky M, Hamam B, Alonso AA (2000) Oscillatory activity in entorhinal neurons and circuits. Ann Y Acad Sci 911:127–150

    Article  CAS  Google Scholar 

  • Dorval AD Jr, White JA (2005) Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. J Neurosci 25:10025–10028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglass JK, Wilkens L, Pantazelou E, Moss F (1993) Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 365:337–340

    Article  CAS  PubMed  Google Scholar 

  • Drover JD, Tohidi V, Bose A, Nadim F (2007) Combining synaptic and cellular resonance in a feedforward neuronal network. Neurocomputing 70:2041–2045

    Article  PubMed  PubMed Central  Google Scholar 

  • Dwyer J, Lee H, Martell A, van Drongelen W (2012) Resonance in neocortical neurons and networks. Eur J Neurosci 36:3698–3708

    Article  PubMed  Google Scholar 

  • Einstein MC, Pollack P-O, Tran DT, Golshani P (2017) Visually evoked 35 Hz membrane potential oscillations reduce the responsiveness of visual cortex neurons in awake behaving mice. J Neurosci 37:5084–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I (2008) Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100:1576–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: Characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560:89–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farries MA, Wilson CJ (2012) Phase response curves of subthalamic neurons measured with synaptic input and current injection. J Neurophysiol 108:1822–1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Farries MA, Wilson CJ (2012) Biophysical basis of the phase response curve of subthalamic neurons with generalization to other cell types. J Neurophysiol 108:1838–1855

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandez R, White JA (2008) Artificial synaptic conductances reduce subthreshold oscillations and periodic firing in stellate cells of the entorhinal cortex. J Neurosci 28:3790–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores A, Manilla S, Huidobro N, De la Torre-Valdovinos B, Kristeva R, Mendez-Balbuena I, Galindo F, Treviño M, Manjarrez E (2016) Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development. Neuroscience 322:416–429

    Article  CAS  PubMed  Google Scholar 

  • Fortune E, Rose G (2001) Short-term plasticity as a temporal filter. Trends Neurosci 24:381–385

    Article  CAS  PubMed  Google Scholar 

  • Fox DM, Tseng H, Smolinsky T, Rotstein HG, Nadim F (2017) Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comp Biol 13:e1005565

    Article  CAS  Google Scholar 

  • Gammaitoni L, Hanggi P, Jung P, Marchesoni F (1998) Stochastic resonance. Rev Mod Phys 70:223–287

    Article  CAS  Google Scholar 

  • Gastrein P, Campanac E, Gasselin C, Cudmore RH, Bialowas A, Carlier E, Fronzaroli-Molinieres L, Ankri N, Debanne D (2011) The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. J Physiol 589:3753–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giocomo LM, Zilli EA, Fransén E, Hasselmo ME (2007) Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gireesh E, Plenz D (2008) Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc Natl Acad Sci USA 105:7576–7581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloveli T, Dugladze T, Rotstein HG, Traub R, Monyer H, Heinemann U, Whittington MA, Kopell N (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci USA 102:13295–13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golomb D, Donner K, Shacham L, Shlosberg D, Amitai Y, Hansel D (2007) Mechanisms of firing patterns in fast-spiking cortical interneurons. PLoS Comp Biol 3:e156

    Article  Google Scholar 

  • Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea pig cortical neurons: physiology and modeling. J Physiol 483:621–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys JG, Giacomo LM, Hasselmo ME (2010) Cholinergic modulation of the resonance properties of stellate cells in layer II of the medial entorhinal. J Neurophysiol 104:258–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys JG, Schultheiss NW, Shay CF, Tsuno Y, Hasselmo ME (2012) Effects of acetylcholine on neuronal properties in entorhinal cortex. Front Behav Neurosci 6:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs MH, Spain WJ (2009) Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal neurons. J Neurosci 29:1285–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinzer K, Longtin A (1996) Encoding with bursting, subthreshold oscillations, and noise in mammalian cold receptors. Neural Comput 8:215–255

    Article  PubMed  Google Scholar 

  • Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na\(^{+}\) current in rat hippocampal pyramidal cells. J Physiol 545(3):783–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Vervaeke K, Graham LJ, Storm JF (2009) Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. J Neurosci 29:14472–14483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends Neurosci 23:216–222

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:698–714

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:683–697

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2002) Resonance and selective communication via bursts in neurons having subthreshold oscillations. Biosystems 67:95–102

    Article  PubMed  Google Scholar 

  • Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11:267–269

    Article  PubMed  Google Scholar 

  • Kay LM, Beshel J, Brea J, Martin C, Rojas-Líbano D, Kopell N (2008) Olfactory oscillations: the what, how and what for. Trends Neurosci 32:207–214

    Article  CAS  Google Scholar 

  • Khosrovani S, Van Der Giessen RS, De Zeeuw CI, De Jeu MTG (2007) In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns. Proc Natl Acad Sci USA 104:15911–15916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kispersky TJ, Fernandez FR, Economo MN, White JA (2012) Spike resonance properties in hippocampal O-LM cells are dependent on refractory dynamics. J Neurosci 32:3637–3651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klink RM, Alonso A (1993) Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J Neurophysiol 70:128–143

    Article  PubMed  Google Scholar 

  • Lampl I, Yarom Y (1993) Subthreshold oscillations of the membrane potential: a functional synchronizing and timing device. J Neurophysiol 70:2181–2186

    Article  CAS  PubMed  Google Scholar 

  • Lampl I, Yarom Y (1997) Subthreshold oscillations and resonant behaviour: two manifestations of the same mechanism. Neuroscience 78:325–341

    Article  CAS  PubMed  Google Scholar 

  • Lau T, Zochowski M (2011) The resonance frequency shift, pattern formation, and dynamical network reorganization via sub-threshold input. PLoS ONE 6:e18983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S-G, Neiman A, Kim S (1998) Coherence resonance in a hodgkin-huxley neuron. Phys Rev E 57:3292–3297

    Article  CAS  Google Scholar 

  • Li G, Cleland T (2017) A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comp Biol 13:e1005760

    Article  CAS  Google Scholar 

  • Lindner B, García-Ojalvo J, Neiman A, Schimansky-Geier L (2004) Effects of noise in excitable systems. Phys Rep 392:321–424

    Article  Google Scholar 

  • Llinás RR, Yarom Y (1986) Oscillatory properties of guinea pig olivary neurons and their pharmachological modulation: an in vitro study. J Physiol 376:163–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Llinás RR, Grace AA, Yarom Y (1991) In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-hz frequency range. Proc Natl Acad Sci USA 88:897–901

    Article  PubMed  PubMed Central  Google Scholar 

  • Loewenstein Y, Yarom Y, Sompolinsky H (2001) The generation of oscillations in networks of electrically coupled cells. Proc Natl Acad Sci USA 98:8095–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manis PB, Molitor SC, Wu H (1999) Subthreshold oscillations generated by TTX-sensitive sodium currents in dorsal cochlear nucleus pyramidal cells. Exp Brain Res 153:443–451

    Article  Google Scholar 

  • Manor Y, Rinzel J, Segev I, Yarom Y (1997) Low-amplitude oscillations in the inferior olive: a model based on electrical coupling of neurons with heterogeneous channel densities. J Neurophysiol 77:2736–2752

    Article  CAS  PubMed  Google Scholar 

  • Marcelin B, Becker A, Migliore M, Esclapez M, Bernard C (2009) h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol Dis 33:436–447

    Article  CAS  PubMed  Google Scholar 

  • Mato G (1989) Stochastic resonance using noise generated by a neural network. Phys Rev E 59:3339–3343

    Article  Google Scholar 

  • McDonnell MD, Abboott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comp Biol 5:e1000348

    Article  CAS  Google Scholar 

  • McNamara B, Wiesenfeld K (1989) Theory of stochastic resonance. Phys Rev A 39:4854–4869

    Article  CAS  Google Scholar 

  • Mejias JF, Marsat G, Bol K, Maler L, Longtin A (2013) Learning contrast-invariant cancellation of redundant signals in neural systems. PLoS Comp Biol 9:e1003180

    Article  CAS  Google Scholar 

  • Mikiel-Hunter J, Kotak V, Rinzel J (2016) High-frequency resonance in the gerbil medial superior olive. PLoS Comp Biol 12:1005166

    Article  CAS  Google Scholar 

  • Mondal Y (2021) Effects of heterogeneity in oscillatory network dynamics. PhD Thesis, Stony Brook University, Stony Brook, NY

  • Mondal Y, Pena RFO, Rotsten HG (2021) Temporal filters in response to presynaptic spike trains: Interplay of cellular, synaptic and short-term plasticity time scales. bioRxiv, p. 460719

  • Morin F, Haufler D, Skinner FK, Lacaille J-C (2010) Characterization of voltage-gated K\(^+\) currents contributing to subthreshold membrane potential oscillations in hippocampal CA1 interneurons. J Neurophysiol 103:3472–3489

    Article  CAS  PubMed  Google Scholar 

  • Muratov CB, Vanden-Eijnden E, WE (2005) Self-induced stochastic resonance in excitable systems. Physica D, 210: 227–240

  • Muresan R, Savin C (2007) Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. J Neurophysiol 97:1911–1930

    Article  PubMed  Google Scholar 

  • Narayanan R, Johnston D (2007) Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56:1061–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan R, Johnston D (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J Neurosci 28:5846–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neiman A, Saparin PI, Stone L (1997) Coherence resonance at noisy precursors of bifurcations in nonlinear dynamical systems. Phys Rev E 56:270–273

    Article  CAS  Google Scholar 

  • Nolan MF, Dudman JT, Dodson PD, Santoro B (2007) HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J Neurosci 27:12440–12551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedroarena CM, Pose IE, Yamuy J, Chase MH, Morales FR (1999) Oscillatory membrane potential activity in the soma of a primary afferent neuron. J Neurophysiol 82:1465–1476

    Article  CAS  PubMed  Google Scholar 

  • Pena RFO, Rotstein HG (2021) Oscillations and variability in neuronal systems: the role of autonomous transient dynamics in the presence of fast deterministic fluctuations. bioRxiv, p. 448371

  • Pena RFO, Ceballos CC, Lima V, Roque AC (2018) Interplay of activation kinetics and the derivative conductance determines resonance properties of neurons. Phys Rev E 97:042408

    Article  CAS  PubMed  Google Scholar 

  • Pena RFO, Lima V, Shimoura RO, Ceballos CC, Rotstein HG, Roque AC (2019) Asymmetrical voltage response in resonant neurons shaped by nonlinearities. Chaos 29:103135

    Article  CAS  PubMed  Google Scholar 

  • Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O (2000) Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. J Physiol 529:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikovsky AS, Kurths J (1997) Coherence resonance in a noise-driven excitable system. Phys Rev Lett 78:775–778

    Article  CAS  Google Scholar 

  • Pradines JR, Osipov GV, Collins JJ (1999) Coherence resonance in excitable and oscillatory systems: the essential role of slow and fast dynamics. Phys Rev E 60:6407–6410

    Article  CAS  Google Scholar 

  • Prinz AA, Thirumalai V, Marder E (2003) The functional consequences of changes in the strength and duration of synaptic inputs to oscillatory neurons. J Neurosci 23:943–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathour RK, Narayanan R (2012) Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. J Physiol 590:5629–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathour RK, Narayanan R (2014) Homeostasis of functional maps in inactive dendrites emerges in the absence of individual channelostasis. Proc Natl Acad Sci USA 111:E1787–E1796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rau F, Clemens J, Naumov V, Hennig RM, Schreiber S (2015) Firing-rate resonances in the peripheral auditory system of the cricket, gryllus bimaculatus. J Comp Physiol 201:1075–1090

    Article  Google Scholar 

  • Reboreda A, Sanchez E, Romero M, Lamas JA (2003) Intrinsic spontaneous activity and subthreshold oscillations in neurones of the rat dorsal column nuclei in culture. J Physiol 551:191–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remme MWH, Lengyel M, Gutkin BS (2012) A theoretical framework for the dynamics of multiple intrinsic oscillators in single neurons. In: Phase Response Curves in Neuroscience: Theory, Experiments and Analysis. N. W. Schultheiss, A. A. Prinz and R. A. Butera, Eds. (Springer), pp. 53–72

  • Remme MWH, Lengyel M, Gutkin BS (2014) A trade-off between dendritic democracy and independence in neurons with intrinsic subthreshold membrane potential oscillations. In: Cuntz H, Remme MWH, Torben-Nielsen B (eds) The Computing Dendrite. Springer, New York

    Google Scholar 

  • Remme WH, Donato R, Mikiel-Hunter J, Ballestero JA, Foster S, Rinzel J, McAlpine D (2014) Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues. Proc Natl Acad Sci USA 111:E2339–E2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Article  PubMed  Google Scholar 

  • Rotstein HG (2014) Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. J Math Neurosci 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotstein HG (2015) Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comp Neurosci 38:325–354

    Article  Google Scholar 

  • Rotstein HG (2017) Resonance modulation, annihilation and generation of antiresonance and antiphasonance in 3d neuronal systems: interplay of resonant and amplifying currents with slow dynamics. J Comp Neurosci 43:35–63

    Article  Google Scholar 

  • Rotstein HG (2017) Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. J Comp Neurosci 43:243–271

    Article  Google Scholar 

  • Rotstein HG (2017) The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. J Comp Neurosci 42:133–166

    Article  Google Scholar 

  • Rotstein HG, Nadim F (2014) Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. J Comp Neurosci 37:9–28

    Article  Google Scholar 

  • Rotstein HG, Nadim F (2019) Frequency dependent responses of neuronal models to oscillatory inputs in current versus voltage clamp. Biol Cybern 113:373–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotstein HG, Oppermann T, White JA, Kopell N (2006) The dynamic structure underlying subthreshold oscillatory activity and the onset of spikes in a model of medial entorhinal cortex stellate cells. J Comp Neurosci 21:271–292

    Article  Google Scholar 

  • Schmitz D, Gloveli T, Behr J, Dugladze T, Heinemann U (1998) Subthreshold membrane potential oscillations in neurons of deep layers of the entorhinal cortex. Neuron 85:999–1004

    CAS  Google Scholar 

  • Schreiber S, Erchova I, Heinemann U, Herz AV (2004) Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol 92:408–415

    Article  PubMed  Google Scholar 

  • Sciamanna G, Wilson CJ (2011) The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. J Neurophysiol 106:2936–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp AA, O’Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389–394

    Article  CAS  PubMed  Google Scholar 

  • Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E (2007) Fast-reset of pacemaking and theta-frequency resonance in cerebellar Golgi cells: simulations of their impact in vivo. Front Cell Neurosci 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Song SC, Beatty JA, Wilson CJ (2016) The ionic mechanism of membrane potential oscillations and membrane resonance in striatal lts interneurons. J Neurophysiol 116:1752–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark E, Eichler R, Roux L, Fujisawa S, Rotstein HG, Buzsáki G (2013) Inhibition-induced theta resonance in cortical circuits. Neuron 80:1263–1276

    Article  CAS  PubMed  Google Scholar 

  • Stiefel KM, Fellous J-M, Thomas PJ, Sejnowski TJ (2010) Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons. Eur J Neurosci 31:1019–1026

    Article  PubMed  PubMed Central  Google Scholar 

  • Surmeier DJ, Mercer JN, Chan CS (2005) Autonomous pacemakers in the basal ganglia: Who needs excitatory synapses anyway? Curr Opin Neurobiol 15:312–318

    Article  CAS  PubMed  Google Scholar 

  • Szucs A, Ráktak A, Schlett K, Huerta R (2017) Frequency-dependent regulation of intrinsic excitability by voltage-activated membrane conductances, computational modeling and dynamic clamp. Eur J Neurosci 46:2429–2444

    Article  PubMed  PubMed Central  Google Scholar 

  • Tateno T, Pakdaman K (2004) Random dynamics of the morris-lecar neural model. Chaos 14:511–530

    Article  PubMed  Google Scholar 

  • Tohidi V, Nadim F (2009) Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. J Neurosci 29:6427–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres JJ, Marro J, Mejias JF (2011) Can intrinsic noise induce various resonant peaks? New J Phys 13:053014

  • Tseng H, Nadim F (2010) The membrane potential waveform on bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. J Neurosci 30:10809–10819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuckwell HC (1989) Stochastic processes in the neurosciences. The Society for Industrial and Applied Mathematics

  • Tuckwell HC (1988) Introduction to Theoretical Neurobiology, vol 2. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Uhlenbeck GE, Ornstein LS (1930) On the theory of brownian motion. Phys Rev 36:823–841

    Article  CAS  Google Scholar 

  • Uzuntarla M, Barreto E, Torres J (2017) Inverse stochastic resonance in networks of spiking neurons. PLoS Comp Biol 13:e1005646

    Article  CAS  Google Scholar 

  • van Brederode JFM, Berger AJ (2008) Spike-firing resonance in hypoglossal motoneurons. J Neurophysiol 99:2916–2928

    Article  PubMed  Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268

    Article  PubMed  Google Scholar 

  • White JA, Budde T, Kay AR (1995) A bifurcation analysis of neuronal subthreshold oscillations. Biophys J 69:1203–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White JA, Klink R, Alonso A, Kay AR (1998) Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J Neurophysiol 80:262–269

    Article  CAS  PubMed  Google Scholar 

  • Wiesenfeld K, Moss F (1995) Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373:33–36

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ, Callaway JC (2000) A coupled oscillator model of the dopaminergic neurons of the substantia Nigra. J Neurophysiol 83:3084–3100

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Hsiao C-F, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: Participants in burst generation. J Neurosci 21:3729–3739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Lin W, Feng AA (2009) Wide-ranging frequency preferences of auditory midbrain neurons: roles of membrane time constant and synaptic properties. Eur J Neurosci 30:76–90

    Article  PubMed  Google Scholar 

  • Yoshida M, Alonso A (2007) Cell-type-specific modulation of intrinsic firing properties and subthreshold membrane oscillations by the M(Kv7)-currents in neurons of the entorhinal cortex. J Neurophysiol 98:2779–2994

  • Yoshida M, Giocomo LM, Boardman I, Hasselmo ME (2011) Frequency of subthreshold oscillations at different membrane potential voltages in neurons at different anatomical positions on the dorsoventral axis in the rat medial entorhinal cortex. J Neurosci 31:12683–12694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: The role of h-current and passive membrane characteristics. J Physiol 588:2109–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Wang L-P, Brauner M, Lewwald JF, Kay K, Watzke N, Wookd PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633–641

    Article  CAS  PubMed  Google Scholar 

  • Zhuchkova E, Remme MWH, Schreiber S (2014) Subthreshold resonance and membrane potential oscillations in a neuron with nonuniform active dendrite properties. In: Cuntz H, Remme MWH, Torben-Nielsen B (eds) The Computing Dendrite. Springer, New York

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation grant DMS-1608077 (HGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio G. Rotstein.

Additional information

Communicated by Antonio C. Roque.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to Special Issue: Stochastic Oscillators.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 12685 KB)

Appendix: Intrinsic and resonant oscillatory properties of 2D linear systems

Appendix: Intrinsic and resonant oscillatory properties of 2D linear systems

Consider

$$\begin{aligned} \left\{ \begin{array}{ll} x' = a\, x + b\, y + A_{in}\, e^{i\, \omega \, t},\\ y' = c\, x+ d\, y \end{array} \right. \end{aligned}$$
(15)

where a, b, c and d are constants, \( \omega = 2 \pi f / 1000 > 0 \) is the input frequency and \( A_{in} \ge 0 \) is the input amplitude. The prime sign represents the derivative with respect to t. The units of t are ms and the units of f are Hz.

1.1 Intrinsic oscillations

The characteristic polynomial for the corresponding homogeneous system (\(A_{in} = 0 \)) is given by

$$\begin{aligned} r^2 - (a + d)\, r+ ( a\, d - b\, c ) = 0. \end{aligned}$$
(16)

The eigenvalues are given by

$$\begin{aligned} r_{1,2} = \frac{a+d \pm \sqrt{(a-d)^2+4 b c}}{2}, \end{aligned}$$
(17)

and the natural (intrinsic) frequency of the (damped) oscillations (in Hz if t has units of ms) is given by

$$\begin{aligned} f_{nat} = \frac{\sqrt{-(a-d)^2-4 b c}}{4 \pi }\, 1000 \end{aligned}$$
(18)

assuming \( (a-d)^2+4 b c < 0 \).

1.2 Resonance and the impedance amplitude profile

The impedance amplitude profile \( Z(\omega ) \) for system (15)–(16) is the magnitude

$$\begin{aligned} Z(\omega ) = \sqrt{\frac{d^2 + \omega ^2}{(a\, d - b\, c - \omega ^2)^2 + (a+d)^2\, \omega ^2}} \end{aligned}$$
(19)

of the complex valued coefficient of the particular solution to the system

$$\begin{aligned} \mathbf{Z}(\omega ) = \frac{(-d+i\, \omega )}{(-a\, + i\, \omega )\, (-d+i\, \omega ) - b\, c}. \end{aligned}$$
(20)

For 1D system, these quantities are given, respectively, by

$$\begin{aligned} Z(\omega ) = \frac{1}{\sqrt{a^2+\omega ^2}} \end{aligned}$$
(21)

and

$$\begin{aligned} \mathbf{Z}(\omega ) = \frac{1}{(-a\, + i\, \omega )}. \end{aligned}$$
(22)

The resonance frequency \( f_{\text {res}} \) (in Hz if t has units of ms) is the frequency at which Z reaches its maximum

$$\begin{aligned} f_{\text {res}} = \frac{\sqrt{ -d^2 + \sqrt{b^2\, c^2 - 2\, a\, b\, c\, d - 2\, d^2\, b\, c}}}{2 \pi }\, 1000. \end{aligned}$$
(23)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pena, R.F.O., Rotstein, H.G. The voltage and spiking responses of subthreshold resonant neurons to structured and fluctuating inputs: persistence and loss of resonance and variability. Biol Cybern 116, 163–190 (2022). https://doi.org/10.1007/s00422-021-00919-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-021-00919-0

Keywords

Navigation