Skip to main content
Log in

Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Neuroscientific studies of drawing-like movements usually analyze neural representation of either geometric (e.g., direction, shape) or temporal (e.g., speed) parameters of trajectories rather than trajectory’s representation as a whole. This work is about identifying geometric building blocks of movements by unifying different empirically supported mathematical descriptions that characterize relationship between geometric and temporal aspects of biological motion. Movement primitives supposedly facilitate the efficiency of movements’ representation in the brain and comply with such criteria for biological movements as kinematic smoothness and geometric constraint. The minimum-jerk model formalizes criterion for trajectories’ maximal smoothness of order 3. I derive a class of differential equations obeyed by movement paths whose nth-order maximally smooth trajectories accumulate path measurement with constant rate. Constant rate of accumulating equi-affine arc complies with the 2/3 power-law model. Candidate primitive shapes identified as equations’ solutions for arcs in different geometries in plane and in space are presented. Connection between geometric invariance, motion smoothness, compositionality and performance of the compromised motor control system is proposed within single invariance-smoothness framework. The derived class of differential equations is a novel tool for discovering candidates for geometric movement primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The book Shirokov and Shirokov (1959) provides the most comprehensive treatise on affine differential geometry that I am aware of, see also Guggenheimer (1977). All necessary definitions and formulae are provided further in text.

  2. Coordinates of the minimum-jerk trajectories constrained by via-points are composed of fifth-order polynomials with respect to time, the third-order derivatives of x(t), y(t) are continuous (Flash and Hogan 1985). Minimum-jerk trajectories with a single via-point satisfy isochrony principle stating that different movement portions have nearly the same duration independently of their extent (Viviani and Terzuolo 1982; Bennequin et al. 2009). Movement durations from the start to the via-point and from the via-point to the end point are very similar (Polyakov 2006; Shpigelmacher 2006; Polyakov et al. 2009b).

  3. The model predicts straight point-to-point trajectories when boundary conditions (velocity and higher-order derivatives at start and end points) are parallel to the point-to-point straight line including the case when the derivatives are zero.

  4. Different motor control studies, e.g., Hogan (1984), Flash and Hogan (1985), Viviani and Flash (1995), Todorov and Jordan (1998), Polyakov (2001), Richardson and Flash (2002), Ben-Itzkah and Karniel (2008), Polyakov et al. (2009b), used cost functionals \(J_{\sigma }(\mathbf {r}_L,\, n)\) for the planar (\(L = 2\)) and spatial (\(L = 3\)) curves with orders of smoothness n equal to 2–4.

  5. Constancy of \(\dot{\sigma }\) is preserved under similarity transformations for all planar measurements \(\sigma \) mentioned in Table 2 besides equi-center-affine and center-affine arcs whose speed of accumulation looses constancy under translations.

  6. The last version of Polyakov (2014) contains exposition of this work in a single text.

  7. Say, constancy of \(\dot{\sigma }_\mathrm{eu}\) is required for \(n=3\). Then the following recursive computation in Mathematica implies a specific logarithmic spiral (31) with \(\beta = \pm 1 / \sqrt{5}\):

    $$\begin{aligned}&\pmb {\text {SetAttributes}[\beta ,\text {Constant}]; x[\phi \_]= \mathrm{e}^{\beta \phi } \text {Cos}[\phi ];}\\&\pmb {y[\phi \_]= \mathrm{e}^{\beta \phi } \text {Sin}[\phi ];\mathrm{d}x\mathrm{d}\phi [\phi \_]=\text {Dt}[x[\phi ],\phi ];}\\&\pmb {\mathrm{d}y\mathrm{d}\phi [\phi \_]=\text {Dt}[y[\phi ],\phi ];\text {d}\sigma \mathrm{d}\phi [\phi \_]=\sqrt{\mathrm{d}x\mathrm{d}\phi [\phi ]{}^{\wedge }2 + \mathrm{d}y\mathrm{d}\phi [\phi ]{}^{\wedge }2};}\\&\pmb { \mathrm{d}x\mathrm{d}\sigma [1, \phi \_]{:=} \mathrm{d}x\mathrm{d}\phi [\phi ] / \text {d}\sigma \mathrm{d}\phi [\phi ]; \mathrm{d}y\mathrm{d}\sigma [1, \phi \_]\text {:=} \mathrm{d}y\mathrm{d}\phi [\phi ] / \text {d}\sigma \mathrm{d}\phi [\phi ];}\\&\pmb { \mathrm{d}x\mathrm{d}\sigma [\text {n}\_, \phi \_]{:=}\text {Dt}[ \mathrm{d}x\mathrm{d}\sigma [n-1, \phi ], \phi ] / \text {d}\sigma \mathrm{d}\phi [\phi ]; }\\&\pmb { \mathrm{d}y\mathrm{d}\sigma [\text {n}\_, \phi \_]{:=}\text {Dt}[ \mathrm{d}y\mathrm{d}\sigma [n-1, \phi ], \phi ] / \text {d}\sigma \mathrm{d}\phi [\phi ];}\\&\pmb {\text {FullSimplify}[ \mathrm{d}x\mathrm{d}\sigma [1, \phi ]\text { }\mathrm{d}x\mathrm{d}\sigma [6, \phi ] +\mathrm{d}y\mathrm{d}\sigma [1, \phi ]\mathrm{d}y\mathrm{d}\sigma [6, \phi ] ]}\\&\frac{10 \beta \left( -1+5 \beta ^2\right) }{\left( \mathrm{e}^{2 \beta \phi } \left( 1+\beta ^2\right) \right) ^{5/2}} \end{aligned}$$
  8. Define a curve in L-dimensional space as the system \(F_k(x_1,\, \ldots ,\, x_L) = 0,\; k = 1,\, \ldots ,\, L-1\) representing intersection of \(L-1\) hypersurfaces of dimension \(L-1\). Correspondingly, the system of Euler–Poisson (E–P) equations (Gelfand and Fomin 1961) (called also Euler-Lagrange) with \(L-1\) Lagrange multipliers: (E–P) \(\left[ \sum _{d=1}^{L}{\dddot{x}_d}^2 + \sum _{k=1}^{L-1}\lambda _k(t) F_k \right] = 0\) will lead to the system \((-1)^3 d{x_d}^6/\mathrm{d}t^6 + \sum _{k=1}^{L-1}\lambda _k(t) \partial F_k / \partial x_d = - d{x_d}^6/\mathrm{d}t^6 + \sum _{k=1}^{L-1}\lambda _k(t) \partial F_k / \partial x_d = 0,\, d=1,\ldots ,L\), implying that at every point r(t) of the curve the vector \(\mathrm{d}\varvec{r}^6/\mathrm{d}t^6\) belongs to the hyperplane spanned by \(L-1\) gradients (normals) to corresponding hypersurfaces \(F_k\) and thus vector \(\mathrm{d}\varvec{r}^6/\mathrm{d}t^6\) is orthogonal to the vector \(\dot{\varvec{r}}\) parallel to curve’s tangent; note that the path is parameterized here by \(\sigma (t) = t\). Identical derivation for nth-order smoothness for a trajectory in L-dimensional space leads to Eq. (16).

  9. Equi-affine and similarity arcs of straight segments are zero, center-affine and affine arcs are not defined, and equi-center-affine arc is zero when straight line crosses the origin.

  10. Formula from Shirokov and Shirokov (1959) corresponding to (35) contains misprint corrected here.

  11. Meaning \(x_0 = y_0 = 0\). Equivalently, tangents to a logarithmic spiral centered at the origin have constant angle with the vectors connecting corresponding points on the curve to the origin.

  12. Proven in Appendix D of Polyakov (2006).

  13. Already without requirement for equality of their equi-affine arcs as in case of equi-affine transformation.

  14. Sequences of parabolic-like components revealed in monkey drawing movements (Polyakov et al. 2009a, b) were usually implemented with unchanged direction of motion—either counterclockwise or clockwise.

  15. Planar similarity transformations are uniquely decomposable into Euclidian and scaling transformations in the same manner as affine in (44).

  16. \(\text{ Left-hand } \text{ side } = f(\beta ) \cdot exp(g(\beta ) \cdot \varphi ) = \text{ const }, g(\beta )\ne 0 \, \mathrm{when} \, \beta \ne 0\).

  17. From Shirokov and Shirokov (1959), formula for the spatial equi-affine curvature: \(\chi (\sigma _{\mathrm{ea}3}) = \left| \begin{array}{ccc} x' &{} x''' &{} x^{(4)} \\ y' &{} y''' &{} y^{(4)} \\ z' &{} z''' &{} z^{(4)} \\ \end{array}\right| \); for the equi-affine torsion: \(\tau (\sigma _{\mathrm{ea}3}) = - \left| \begin{array}{ccc} x'' &{} x''' &{} x^{(4)} \\ y'' &{} y''' &{} y^{(4)} \\ z'' &{} z''' &{} z^{(4)} \\ \end{array} \right| \). The differentiation is implemented with respect to \(\sigma _{\mathrm{ea}3}\).

  18. The 1-st order jet of a function f is characterized by three slots: the coordinate x, the value of f at x, \(y = f(x)\) and the value of its derivative \(p = f'(x)\). The latter is the slope of the tangent to the graph of f at the point \(a = (x, f(x) )\) of \(\mathbb {R}\).

  19. This is similar to vectorial concatenation of point-to-point movement elements into a single trajectory (without rest point in the middle) in the double-step paradigm (Flash and Henis 1991).

  20. Such decomposition is not just an exemplar case, but it is a universal property for parabolic segments because it is preserved under arbitrary affine transformations and affine transformations can be used to map the piece of parabola approximating the path into an arbitrary parabolic segment.

  21. Text S1 of Polyakov et al. (2009a) describes regularization procedure used in equi-affine analysis of monkey scribbling movements.

References

  • Aui A, Adler M, Croceti D, Miller M, Mostofsky S (2010) Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 49(6):539–551

    Google Scholar 

  • Averbeck BB, Crowe DA, Chafee MV, Georgopoulos AP (2003a) Neural activity in prefrontal cortex during copying geometrical shapes 1. Single cells encode shape, sequence, and metric parameters. Exp Brain Res 150(2):127–141

    Article  PubMed  Google Scholar 

  • Averbeck BB, Crowe DA, Chafee MV, Georgopoulos AP (2003b) Neural activity in prefrontal cortex during copying geometrical shapes 2. Decoding shape segments from neural ensembles. Exp Brain Res 150(2):142–153

    Article  PubMed  Google Scholar 

  • Ben-Itzkah S, Karniel A (2008) Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput 20(3):779–812

    Article  Google Scholar 

  • Bennequin D, Fuchs R, Berthoz A, Flash T (2009) Movement timing and invariance arise from several geometries. PLoS Comput Biol 5(7):e1000426. doi:10.1371/journal.pcbi.1000426

  • Berns G, Sejnowski TJ (1996) How the basal ganglia make decisions. In: Damassio AR et al (eds) Neurobiology of decision-making Springer, Berlin, Heidelberg

  • Bizzi E, Mussa-Ivaldi FA, Giszter S (1991) Computations underlying the execution of movement: a biological perspective. Science 253(5017):287–291

    Article  CAS  PubMed  Google Scholar 

  • Bright I (2006) Motion planning through optimization. MSc Thesis, Department of Computer Science and Applied Mathematics, Weizmann Institute of Science

  • Calabi E, Olver PJ, Tannenbaum A (1996) Affine geometry, curve flows, and invariant numerical approximations. Adv Math 124:154–196

    Article  Google Scholar 

  • Casile A, Dayan E, Caggiano V, Hendler T, Flash T, Giese M (2010) Neuronal encoding of human kinematic invariants during action observation. Cereb Cortex 20(7):1647–55

    Article  PubMed  Google Scholar 

  • Cheng J, Anderson W (2012) The role of the basal ganglia in decision making: a new fMRI study. Neurosurgery 71(4):N14–N15

    Article  CAS  PubMed  Google Scholar 

  • d’Avella A, Saltiel P, Bizzi E (2003) Combinations of muscle synergies in the construction of a natural motor behavior. Nat Neurosci 6:300–308

    Article  PubMed  Google Scholar 

  • Dayan E, Casile A, Levit-Binnun N, Giese M, Hendler T, Flash T (2007) Neural representations of kinematic laws of motion: evidence for action–perception coupling. Proc Natl Acad Sci USA 104:20582–20587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dayan E, Inzelberg R, Flash T (2012) Altered perceptual sensitivity to kinematic invariants in Parkinson’s disease. PLoS ONE 7(2)

  • Dickey AS, Amit Y, Hatsopoulos NG (2013) Heterogeneous neural coding of corrective movements in motor cortex. Front Neural Circuits 7:Article 51

  • Ding L, Gold JI (2013) The basal ganglia’s contributions to perceptual decision-making. Neuron 79(4):640–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dipietro L, Poizner H, Krebs HI (2014) Spatiotemporal dynamics of online motor correction processing revealed by high-density electroencephalography. J Cogn Neurosci 26(9):1966–1980

    Article  PubMed  PubMed Central  Google Scholar 

  • Endres D, Meirovitch Y, Flash T, Giese MA (2013) Segmenting sign language into motor primitives with bayesian binning. Front Comput Neurosci 7(68). doi:10.3389/fncom.2013.00068

  • Flash T, Henis E (1991) Arm trajectory modification during reaching towards visual targets. J Cogn Neurosci 3(3):220–230

    Article  CAS  PubMed  Google Scholar 

  • Flash T, Hochner B (2005) Motor primitives in vertebrates and invertebrates. Curr Opin Neurobiol 15:1–7

    Article  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5(7):1688–1703

    CAS  PubMed  Google Scholar 

  • Flash T, Henis E, Inzelberg R, Korczyn A (1992) Timing and sequencing of human arm trajectories: normal and abnormal motor behaviour. Hum Mov Sci 11:83–100

    Article  Google Scholar 

  • Fuchs R (2010) Geometry invariants and optimization. PhD thesis. http://lib-phds1.weizmann.ac.il/Dissertations/Fuchs_Ronit_2011.pdf

  • Gelfand I, Fomin S (1961) Calculus of variations. Nauka, Moscow

    Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537

    CAS  PubMed  Google Scholar 

  • Giszter S, Hart C (2013) Motor primitives and synergies in the spinal cord and after injury—the current state of play. Annals of the New York Academy of Sciences, New York

    Google Scholar 

  • Giszter SF, Mussa-Ivaldi FA, Bizzi E (1993) Convergent force fields organized in the frog’s spinal cord. J Neurosci 13(2):467–491

    CAS  PubMed  Google Scholar 

  • Guggenheimer HW (1977) Differential geometry. Dover, New York

    Google Scholar 

  • Handzel AA, Flash T (1999) Geometric methods in the study of human motor control. Cogn Stud Bull Jpn Cogn Sci Soc 6(3):309–321

    Google Scholar 

  • Handzel A, Flash T (2001) Affine invariant edge completion with affine geodesics. In: IEEE workshop on variational and level set methods (VLSM’01)

  • Hanuschkin A, Herrmann JM, Morrison A, Diesmann M (2011) Compositionality of arm movements can be realized by propagating synchrony. J Comput Neurosci 30(3):675–697

    Article  PubMed  Google Scholar 

  • Harpaz NK, Flash T, Dinstein I (2014) Scale-invariant movement encoding in the human motor system. Neuron 81:452–462

    Article  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  CAS  PubMed  Google Scholar 

  • Hart C, Giszter S (2004) Modular premotor drives and unit bursts as primitives for frog motor behaviors. J Neurosci 24:5269–5282

    Article  CAS  PubMed  Google Scholar 

  • Hatsopoulos NG, Amit Y (2012) Synthesizing complex movement fragment representations from motor cortical ensembles. J Physiol Paris 106:112–119

    Article  PubMed  Google Scholar 

  • Hatsopoulos NG, Xu Q, Amit Y (2007) Encoding of movement fragments in the motor cortex. J Neurosci 27(19):5105–5114

    Article  CAS  PubMed  Google Scholar 

  • Hocherman S, Wise SP (1991) Effects of hand movement path on motor cortical activity in awake, behaving rhesus-monkeys. Exp Brain Res 83(2):285–302

    Article  CAS  PubMed  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 83(2):2745–2754

    Google Scholar 

  • Huh D, Sejnowski TJ (2015) Spectrum of power laws for curved hand movements. PANS 112(29):3950–3958

    Article  Google Scholar 

  • Iavnenko Y, Grasso R, Macellari V, Lacquaniti F (2002) Two-thirds power law in human locomotion: role of ground contact forces. Neuroreport 13:1171–1174

    Article  Google Scholar 

  • Iavnenko Y, Poppele R, Lacquaniti F (2004) Five basic muscle activation patterns account for muscle activity during human locomotion. J Physiol 556:267–282

    Article  Google Scholar 

  • Karklinsky M, Flash T (2015) Timing of continuous motor imagery: the two-thirds power law originates in trajectory planning. J Neurophysiol 113(7):2490–2499

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolomogorov A (1988) Mathematics—science and profession. Nauka, Moscow

    Google Scholar 

  • Krebs H, Aisen M, Volpe B, Hogan N (1999) Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci USA 96(8):4645–4649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacquaniti F, Terzuolo C, Viviani P (1983) The law relating the kinematic and figural aspects of drawing movements. Acta Psychol 54:115–130

    Article  CAS  Google Scholar 

  • Levit-Binnun N, Schechtman E, Flash T (2006) On the similarities between the perception and production of elliptical trajectories. Exp Brain Res 172(4):533–555

    Article  PubMed  Google Scholar 

  • Maoz U (2007) Trajectory formation and units of action, from two- to three-dimensional motion. The Hebrew University of Jerusalem, PhD Thesis

  • Maoz U, Flash T (2014) Spatial constant equi-affine speed and motion perception. J Neurophysiol 111(2):336–49

    Article  PubMed  Google Scholar 

  • Maoz U, Berthoz A, Flash T (2009) Complex unconstrained three-dimensional hand movement and constant equi-affine speed. J Neurophysiol 101(2):1002–1015

    Article  PubMed  Google Scholar 

  • Meirovitch Y (2014) Movement decomposition and compositionality based on geometric and kinematic principles. PhD thesis, Department of Computer Science and Applied Mathematics, Weizmann Institute of Science

  • Meirovitch Y, Harris H, Dayan E, Arieli A, Flash T (2015) Alpha and beta band event-related desynchronization reflects kinematic regularities. J Neurosci 35(4):1627–1637

    Article  CAS  PubMed  Google Scholar 

  • Moran DW, Schwartz AB (1999a) Motor cortical activity representation of speed and direction during reaching. J Neurophysiol 82:2676–2692

    CAS  PubMed  Google Scholar 

  • Moran DW, Schwartz AB (1999b) Motor cortical activity during drawing movements: population representation during spiral tracing. J Neurophysiol 82:2693–2704

    CAS  PubMed  Google Scholar 

  • Morasso P, Mussa-Ivaldi F (1982) Trajectory formation and handwriting: a computational mode. Biol Cybern 45:131–142

    Article  CAS  PubMed  Google Scholar 

  • Petitot J (2003) The neurogeometry of pinwheels as a sub-riemannian contact structure. J Physiol Paris 97:265–309

    Article  PubMed  Google Scholar 

  • Pham Q-C, Bennequin D (2012) Affine invariance of human hand movements: a direct test. Quant Biol (arXiv)

  • Plotnik M, Flash T, Inzelberg R, Schechtman E, Korczyn AD (1998) Motor switching abilities in parkinson’s disease and old age: temporal aspects. Neurol Neurosurg Psychiatry 65:328–337

    Article  CAS  Google Scholar 

  • Pollick FE, Sapiro G (1997) Constant affine velocity predicts the 1/3 power law of planar motion perception and generation. Vis Res 37(3):347–353

    Article  CAS  PubMed  Google Scholar 

  • Pollick FE, Maoz U, Handzel A, Giblin P, Sapiro G, Flash T (2009) Three-dimensional arm movements at constant equi-affine speed. Cortex 45:325–339

    Article  PubMed  Google Scholar 

  • Polyakov F (2001) Analysis of monkey scribbles during learningin the framework of models of planar hand motion. MSc. thesis. Department of Computer Science and Applied Mathematics, Weizmann Institute of Science. http://dl.dropboxusercontent.com/u/18260609/Texts/PolyakovThesisMSc.pdf

  • Polyakov F (2006) Motion primitives and invariants in monkey scribbling movements: analysis and mathematical modeling of movement kinematics and neural activities. PhD thesis. Department of Computer Science and Applied Mathematics, Weizmann Institute of Science. http://dl.dropboxusercontent.com/u/18260609/Texts/PolyakovThesisPhD.pdf

  • Polyakov F (2014) A class of differential equations for merging movements’ kinematic optimality with geometric invariance. arXiv:1409.0675v1

  • Polyakov F, Flash T, Abeles M, Ben-Shaul Y, Drori R, Nadasdy Z (2001) Analysis of motion planning and learning in monkey scribbling movements. In: Proceedings of the tenth biennial conference of the International Graphonomics Society. The University of Nijmegen, Nijmegen, The Netherlands. http://dl.dropboxusercontent.com/u/18260609/Texts/IGS2001.pdf

  • Polyakov F, Drori R, Ben-Shaul Y, Abeles M, Flash T (2009a) A compact representation of drawing movements with sequences of parabolic primitives. PLoS Comput Biol 5(7):e1000427. doi:10.1371/journal.pcbi.1000427

  • Polyakov F, Stark E, Drori R, Abeles M, Flash T (2009b) Parabolic movement primitives and cortical states: merging optimality with geometric invariance. Biol Cybern 100(2):159–184

    Article  PubMed  Google Scholar 

  • Prat CS, Stocco A (2012) Information routing in the basal ganglia: Highways to abnormal connectivity in autism? comment on “disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders” by kana et al. Phys Life Rev 9:1–2

  • Richardson MJE, Flash T (2002) Comparing smooth arm movements with the two-thirds power law and the related segmented-control hypothesis. J Neurosci 22(18):8201–8211

    CAS  PubMed  Google Scholar 

  • Rohrer B, Hogan N (2003) Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol Cybern 89:190–199

    Article  PubMed  Google Scholar 

  • Schrader S, Diesmann M, Morrison A (2011) A compositionality machine realized by a hierarchic architecture of synfire chains. Front Comput Neurosci 4:Article 154

  • Schwartz AB (1992) Motor cortical activity during drawing movements: population representation during sinusoid tracing. J Neurophysiol 70(1):28–36

    Google Scholar 

  • Schwartz AB (1994) Direct cortical representation of drawing. Science 265:540–542

    Article  CAS  PubMed  Google Scholar 

  • Sekuler R, Nash D (1972) Speed of size scaling in human vision. Psychon Sci 27(2):93–94

    Article  Google Scholar 

  • Shanechi MM, Hu RC, Powers M, Wornell GW, Brown EN, Williams ZM (2012) Neural population partitioning and a concurrent brain-machine interface for sequential motor function. Nat Neurosci 15(2):1715–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirokov P, Shirokov A (1959) Affine differential geometry. GIFML, Moscow, 1959. German edition: affine differentialgeometrie, Teubner, 1962. English translation of relevant parts of the book can be obtained from the author of the manuscript (FP) by request for non-commercial use in research and teaching. Some parts of the book are translated into English in Appendix A of (Polyakov, 2006)

  • Shpigelmacher M (2006) Directional-Geometrical Approach to via-point movement. MSc Thesis

  • Sosnik R, Hauptmann B, Karni A, Flash T (2004) When practice leads to co-articulation: the evolution of geometrically defined movement primitives. Exp Brain Res 156:422–438

    Article  PubMed  Google Scholar 

  • Sosnik R, Shemesh M, Abeles M (2007) The point of no return in planar hand movements: an indication of the existence of high level motion primitives. Cogn Neurodyn 1(4):341–358

    Article  PubMed  PubMed Central  Google Scholar 

  • Sosnik R, Flash T, Sterkin A, Hauptmann B, Karni A (2014) The activity in the contralateral primary motor cortex, dorsal premotor and supplementary motor area is modulated by performance gains. Front Hum Neurosci 8(1):201

    PubMed  PubMed Central  Google Scholar 

  • Sosnik R, Chaim E, Flash T (2015) Stopping is not an option: the evolution of unstoppable motion elements (primitives). J Neurophysiol 114(2):846–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka H, Sejnowski TJ (2015) Motor adaptation and generalization of reaching movements using motor primitives based on spatial coordinates. J Neurophysiol 113(4):1217–1233

    Article  PubMed  Google Scholar 

  • Tanaka H, Krakauer JW, Qian N (2006) An optimization principle for determining movement duration. J Neurophysiol 95(6):3875–3886

    Article  PubMed  Google Scholar 

  • Thoroughman KA, Shadmehr R (2000) Learning of action through adaptive combination of motor primitives. Nat 407:742–747; Interesting

  • Todorov E, Jordan MI (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J Neurophysiol 80(2):696–714

    CAS  PubMed  Google Scholar 

  • Torres EB (2011) Impaired endogenously evoked automated reaching in parkinson’s disease. J Neurosci 31(49):17848–17863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres EB (2013) Atypical signatures of motor variability found in an individual with asd. Neurocase Neural Basis Cogn 19(2):150–165

    Google Scholar 

  • Torres E, Andersen R (2006) Space-time separation during obstacle avoidance learning in monkeys. J Neurophysiol 96:162–167

    Article  Google Scholar 

  • Torres EB, Brincker M, Isenhower RW, Yanovich P, Stigler KA, Nurnberger JI, Metaxas DN, Jose JV (2013) Autism: the micro-movement perspective. Front Integr Neurosci 7:13–38

    Google Scholar 

  • Tresch M, Saltiel P, Bizzi E (1999) The construction of movement by the spinal cord. Nat Neurosci 2:162–167

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Suzuki R, Kawato M (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern 61:89–101

    Article  CAS  PubMed  Google Scholar 

  • van Brunt B (2004) The calculus of variations. Springer, New York

    Book  Google Scholar 

  • van Zuylen E, Gielen C, van der Gon Denier J (1988) Coordination and inhomogeneous activation of human arm muscles during isometric torques. J Neurophysiol 60:1523–1548

    PubMed  Google Scholar 

  • Vieilledenta S, Kerlirzina Y, Dalberab S, Berthoz A (2001) Relationship between velocity and curvature of a human locomotor trajectory. Neurosci Lett 305(1):65–69

    Article  Google Scholar 

  • Viviani P, Flash T (1995) Minimum-jerk, two-thirds power law, and isochrony: converging approaches to movement planning. J Exp Psychol Hum Percept Perform 21(1):233–242

    Article  Google Scholar 

  • Viviani P, Stcucchi N (1992) Biological movements look uniform: evidence of motor-perceptual interactions. J Exp Psychol Hum Percept Perform 18(3):603–623

    Article  CAS  PubMed  Google Scholar 

  • Viviani P, Terzuolo C (1982) Trajectory determines movement dynamics. Neuroscience 7:431–437

    Article  CAS  PubMed  Google Scholar 

  • Woch A, Plamondon R (2010) Characterization of bi-directional movement primitives and their agonist-antagonist synergy with the delta-lognormal model. Motor Control 14(1):1–25

    Article  PubMed  Google Scholar 

  • Woch A, Plamondon R, O’Reilly C (2011) Kinematic characteristics of bidirectional delta-lognormal primitives in young and older subjects. Hum Mov Sci 30(1):1–17

    Article  PubMed  Google Scholar 

  • Wu T, Liu J, Zhang H, Hallett M, Zheng Z, Chan P (2015) Attention to automatic movements in Parkinson’s disease: modified automatic mode in the striatum. Cereb Cortex 25:3330–3342

    Article  PubMed  Google Scholar 

  • Zelman I, Titon M, Yekutieli Y, Hanassy S, Hochner B, Flash T (2013) Kinematic decomposition and classification of octopus arm movements. Front Comput Neurosci 7:60. doi:10.3389/fncom.2013.00060

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Polyakov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, F. Affine differential geometry and smoothness maximization as tools for identifying geometric movement primitives. Biol Cybern 111, 5–24 (2017). https://doi.org/10.1007/s00422-016-0705-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-016-0705-7

Keywords

Navigation